BRUNO DE LIMA PINHEIRO

Implementagao de um ambiente para a simulagao distribuida de
sistemas produtivos

Sao Paulo
2006

BRUNO DE LIMA PINHEIRO

Implementacédo de um ambiente para a simulacio distribuida de
sistemas produtivos

Monografia apresentada a Escola Politécnica da
Universidade de Sao Paulo referente & disciplina
PMR 2550 - Projeto de Conclusido do Curso
Curso de Graduagéio: Engenharia Mecatronica

Orientador: Prof. Dr. Paulo Eigi Miyagi

Sao Paulo
2006

TE ok
Pers-

DEDALUS - Acervo - EPMN

AN URATRE

31600012508

{5450
FICHA CATALOGRAFICA

Pinheiro, Bruno de Lima
Implementagio de um ambiente para a simuiacao
distribuida

de sistemas produtivos / B. de L. Pinheiro. — Sao Paulo, 2006.
90 p.

Trabalho de Formatura - Escola Politécnica da Universidade
de S3o Paulo. Departamento de Engenharia Mecatrénica e de
Sistemas Mecanicos.

1.Administracio da produgio 2.Simulagao distribuida
3.Rede
de Petri l.Universidade de S3o Paulo. Escola Politécnica. Depar-
tamento de Engenharia Mecatrénica e de Sisternas Mecanicos
.t

A Deus e aos meus pais,
José Antbnio e Anamaria.

AGRADECIMENTOS

Ao meu orientador, Prof. Dr. Paulo Eigi Miyagi, pela sua constante orientacéo e
incentivo para o desenvolvimento deste trabatho.

Aos colegas de sala Ana, Carlos, Ceésar, Alexandre e Rafael pela ajuda e
companhia.

A Ruth, pelo seu amor e carinho.

A Escola Politecnica da USP, em especial ao Departamento de Engenharia
Mecatronica e de Sistemas Mecanicos, que institucionalmente viabilizaram este

trabalho.

Tudo que podia ser inventado ja o foi.
(Charles Duell, diretor Depto. Patentes EUA, 1899)

RESUMO

Os sistemas produtivos nos paises industrializados tém evoluido para uma
nova maneira de operar, impulsionada pelo desenvolvimento de tecnologias de
telecomunicagso, mecatrénica e mobilidade. Esse novo sistema produtivo tem, entre
suas principais caracteristicas, a descentralizacdo das tarefas e uma maior
especializacdo de cada tipo de processo: tudo isso aliado a uma maior
automatizag&o das operagdes gera sistemas que envolvem interacbes relativamente
complexas entre partes que podem estar distribuidas numa mesma planta ou até
mesmo dispersas geograficamente.

Para analise das solugdes de projeto desses sistemas, uma das abordagens
que tem sido considerada é a simulagéo distribuida, a qual trata da execugéo de
modelos instalados em computadores dispersos, conectados através de uma rede
de comunicacdo. Esta abordagem envolve o desenvolvimento de um ambiente
distribuido, baseado, por exemplo, em redes de Petri, para a descrigdo e analise dos
processos. Este ambiente deve assim dar suporte & concepcdo de sistemas de
telecomando e monitoramento remoto, permitindo que diferentes maédulos do
sistema sejam desenvolvidos por diferentes pessoas em diferentes localidades, e
que o comportamento destes modulos possa ser analisado via simulacao.

Portanto, o objetivo deste trabalho é o desenvoivimento e teste de algoritmos
de gerenciamento de processos de simulagdo distribuida usando comunicacdo entre
computadores via sockets efou middlewares (ex. CORBA).

Como estudo de caso, considerou-se o sistema flexivel de montagem onde
cada estacdo de trabalho pode ser entendida como uma instalagdo produtiva

distinta.

Palavras chaves: telecomando,monitoracéo remota, simulag&o distribuida, rede de
Petri.

ABSTRACT

The productive systems in the industrialized countries have evolved for a new
way to operate, stimulated for the development of technologies of telecommunication,
mechatronics and mobility. This new productive system has, among its main
characteristics, the decentralization of the tasks and an increasing specialization of
each type of process; besides this the automatization of the operations require
control systems that involve relatively complex interactions between parts that can be
distributed in one same plant or even though geographically dispersed.

For analysis of these systems, one of the approaches that has been
considered is the distributed simulation, which deals with the execution of models
installed in dispersed computers, connected through a communication net. This
approach involves the development of a distributed environment, based for example,
in Petri nets for the description and analysis of the processes. This environment must
be a support to the conception of telecommand and remote monitoring systems,
allowing that different modules of the system be deveioped by different peopie in
different localities, and that the behavior of these modules be analyzed through
simulation.

Therefore, the objective of this work is the development and test of algorithms
for processes management of distributed simulation using the communication among
computers using sockets and/or middlewares (ex. CORBA).

As a case study, the flexible assembly system where each station of work can
be understood as a distinct productive installation was considered.

Key Words: telecommand, remote monitoring, distributed simulation, Petri net.

LISTA DE HLUSTRAGOES

Figura 1. Diagrama do método de modelagem de sistemas.cococeeeee 21
Figura 2 - Esquema representando a comunicacao entre servidor-cliente via sockets

B NEEINEE. e e bbb e bt e a e ens 24
Figura 3 - A sequéncia de chamadas de procedimento com sockels no cliente e

SEerVIdOr e@XempPlO.oooooirii e 27
Figura 4 — Montagem dos diferentes cilindros pelo MiniCIM.c.......... 31
Figura 5 — Esquema ilustrativo do sistema MiniCIM. ... 33
Figura 6 — Estagao de montagem do MiniCIM. ..., 34
Figura 7 - Comunicacao Industrial...............cocrimimrriee e 35
Figura 8 - Ligagdo e terminacdo para0 RS-485...........oommmeiie e 39
Figura 9 - SIMATIC S7-300 deSIGN.ccoiieiiiieieiritiie e e e e eeeeee e 41
Figura 10 — Ambiente proposto para simulacao distribuida no sistema flexivel do

PMR-EPUSP. ...t 44
Figura 11 — Implementacao teste para um ambiente de simulag¢éo distribuida. 46
Figura 12 = Tela dO SEIVIOT.ot r st 48
Figura13 -Teladocliente. ..o 49
Figura 14 - Visualizagdo da estagdo de montagem pela webcam. 52

LISTA DE TABELAS

Tabela 1 - Caracteristicas basicas do RS-485.............coooviiiriniiini i 37
Tabela 2 - Distancias baseadas em velocidade de transmisséo para caboe Tipo A .. 38
Tabela 3 — Especificacdo do CPU 315-2DP. ... 39
Tabela 4 — Médulos de expanséao para o CLP SIMATIC §7-300.............ccccorvereenne 40
Tabela 5 — Passos da linha de producéo do estudode caso.............cccccoeeveniee, 50

LISTA DE PALAVRAS RESERVADAS

Redes de Petri (Fonte: Times New Roman 12)
e Transicdo
e Lugar
e Marca

® Arco habilitador

® Arco inibidor

Protocolo sockets (Fonte: Verdana 12)
e Sock
o servIP
¢ servPort
e connect
* closesocket
s send
e recv

o WSAStartup

e |isten

Funcgdes especificas do programa implementado (Fonte: Tahoma 12)
load_tool()

a_field_write()

e_field_read()

a_field_read()

API
CiM
CLP
CORBA
FBD
DL
LAD
ILAN
OMA
OMG
OPN
ORB
Profibus DP
RdP
SEDs
SIT
STL
WAN
XML
ZVEI

LISTA DE ABREVIATURAS E SIGLAS

Aplication program interface

Computer Integrated Manufacturing
Controle I6gico programavel

Common object request broker architecture
Biocos de fungdo

Interface definition language

Ladder

Local area network

Object architecture model

Object management group

Object Petri Net

Object request broker

Periferia Descentralizada

Rede de Petri

Sistemas a eventos discretos

Sistema Inteligente de Transporte

Lista de instrugbes

Wide area network

Extensible Markup Language

Associacdo Central da IndGstria Elétrica Alema

11

SUMARIO

1. INTRODUGAODooeeeecracscinersscsssssssnssnsasmascssnssesssonsesssesensres sensasassanssssasnssmssaasas 14
1.1. ORGANIZAGAD DO TEXTO ... e eeee s tastatsataeeetanaseeanssaasessnsansmnnsnnsaraenees 15

2. TECNICAS DE MODELAGEM E SIMULAGAO.......cccoiimsiainssrssrmssssssasesanssesnsns 16
2.1. SIMULACAO DISTRIBUIDA, BASEADA EM REDE DE PETRI ..ccoevveeieiieiececeee e 17
2.2. AMBIENTE DE SIMULAGAO DISTRIBUIDA.......uniiee i iee ettt aeeeeeaeeaaeae e 22
2.2.1.BaseadO @M SOCKEEScoooeeoeooeeeeeeeeeeeeteecaera e ressnaaras s raanasansneas 23
ODJBIO CHIOMIO. ...ttt en e 25
ODJEIO SEIVIHON ...ttt e oo 25
Seqiiéncia de Chamadas de Procedimento com SoCKels............cooveceeecen. 26
2.2.2. Baseado €M CORBA oottt ettt etseeaasassans s s 28
VANEAGONS. ...ttt ettt et n e e a e nae 29
DESVANTAGENS......oooeeeeeeeeeeee ettt eeer e 30

3. SISTEMA MINICIM INSTALADO NO PMR-EPUSP e e 31
S MINICIM ettt et e eeae e e e e ee e arbeasananaan 31
3.1.2. DESCHIGAOD GOIAI ... teeeeeeea e eseeeesesensaesmesnnenes 32
3.1.3. Estacédo de montagen..............ccoeeeeeeecvevncnenns B 33

3.2. COMUNICAGAD PROFIBUS.....ovieviear e evtttee et ee e eseeas e eeeeeeeasveeeemen e raeeeneeae e 24

O I B o 11 (17 TSR 34
3.2.2. Profibus-DP - Periferia Descentralizada (Decentralized Periphery)......... 35
3.2.3. Meio de transmiSS80 RS-485ooom et 36

3.3 CLP ESTUDADODoviitiieitieeeeeeeteeeesete et et eeteeaeeteeeereesaesean e esnseesaesseesesesne e 39
3.3.1. Controlador programavel S7-300...............oeeeeeeeeeeeieeeeeeeeeeeeieieeaiiieaaens 39

4. AMBIENTE PROPOSTO.........ceeecertreesesemmmcttsesssssmemsssessssans amnsesssssnsmsnmsesssssanann 43
4.1, O AMBIENTE IMPLANTADOoveieieiiee e eetie e eee e e r e ereee et s e e s ess s emneeeeeeeaenenseons 45
4.1.1. “Abertura” de cOmuUNICaga0 SErial................ocoeeeeeeeeieeeeeeeeeeeeeeeeaann. 46
4.1.2. TESTES dO SISICMIA. ...ttt seesvavenreanssrsassasnasns 49
4.1.3. Comunicacdo via intermnelc.ooeeeeeeeeeer et 51
4.1.4. Discussédo dos testes realizados.cooeeeeeeeeeeeeeeeeeeeeeeeeeeeeen 52

R o] o7 MUE: Y. X o 2 53

5.1, TRABALHOS FUTURDS ..oeitieeeeee e aeeee e e e e eae e e eeeeas man st ssssenesmnm e msma e e aanemn eememnsnennns 54

6. REFERENCIA BIBLIOGRAFICASceoeeeeverersemeememssasssssnsssssssseenessssnsosssssansas 55
ANEXO A: TESTE DE COMUNICACAO COM SOCKETS.....ccovirerserassarssenssnssaranenn 58
A1 ARQUIVO DO SERVIDOR, . e ieeeeeeee e aeeeeemaee v aeesaraaea e eae e aes e e mmaeae e e emeeessssasnensnrans 58
A2 ARQUIVO DO CLIENTE . eeteee e eeeeeeeteseeeeeeseeeeesasrsen e e e e aesse e maeaes e senssbassssnsnssannsns 60

ANEXO B: PROGRAMAGAO DO AMBIENTE DE SIMULAGAO DISTRIBUIDA

T E o A Y 0 L T 63
B.1 BiBLIOTECA KONFORT.H DO SIEMENS PRODAVE 6.0 63
B.2 BBLIOTECAWSO5 S7.HDO SIEMENS PRODAVE 6.0.......cooeiiie e, 64
B.3. PROGRAMA CLIENTE DO COMPUTADOR REMOTO .. .uuiii i eeeee e ceee e s e va e enee 67
B.4. PROGRAMA SERVIDOR DO COMPUTADOR LOCALoieee e eeeeeeea e e eeasasaeeen s 78

13

1. INTRODUGAO

O quadro atual do setor produtivo é diferente do modelo Fordista da revolucéoe
industrial. Hoje devido a evolugao tecnolégica, o setor sofreu e sofre mudangas
significativas na maneira de conceber e produzir bens e servicos. Os meios de
producao deixam de ser em plantas Unicas e lineares, para tornarem-se dispersas
fisicamente e com inimeros processos que sao conduzidos de modo paralelo
(JUNQUEIRA, 20086).

Os produtos ndo sio mais feitos em fabricas verticalizadas de grande porte
onde a matéria prima entra de um lado da linha de producdo e o produto final sai
pronto do outro lado. O sistema produtivo atual conta com vérias partes (inciuindo
varias empresas), sendo cada uma delas especializada no seu setor, e 0s varios
componentes dos produtos passam por elas de maneira concomitante, recebendo
em cada etapa um trabalho especifico (LEE;LAU,1999). Além disso, a competicédo
no mercado nao envolve apenas o0s pre¢os, mas também o grau de inovagéo
tecnoldgica dos produtos.

Isso tudo leva a meios de producdo mais complexos, com maior grau de
automatizacdo, com tecnologias programaveis e flexiveis, mecanismos auténomos e
sistemas distribuidos fisicamente (JUNQUEIRA, 2006).

A maneira de pensar da sociedade com relacdo aos sistemas produtivos
também tem mudado, abandonando o foco de que a empresa € uma entidade
isolada, passando agora a uma visdo mais integrada e dinamica, considerando a
atuacdo de uma empresa dentro de uma rede corporativa internacional de fabricas
(SHI; GREGORY, 1998).

Considerando, portanto, o aumento da complexidade destes novos sistemas
produtivos, onde se fazem necesséarios ¢ uso de novas técnicas de modelagem e
analise, em particular a distribuida, o objetivo deste trabalho &€ a implementagédo de
um ambiente de simulacao distribuida de sistemas produtivos.

14

1.1. Organizagio do texto

No capitulo 2 sgo apresentados os fundamentos teéricos que embasam o
trabalho, sendo feito um estudo das técnicas de modelagem e simulacao e um
estudo comparativo das linguagens CORBA e sockets para implementacéo do
ambiente distribuido.

No capitulo 3 é apresentado o sistema produtivo MiniCIM instalado no PMR-
EPUSP, bem como o estudo de seus componentes.

No capitulo 4 € proposto o ambiente de simulagéo distribuida de sistemas

produtivos.
No capitulo 5 sdo apresentados os comentarios finais, conclusfes e

propostas de trabalhos futuros.

15

2. TECNICAS DE MODELAGEM E SIMULAGAO

Para analisar, projetar e construir sistemas do ponto de vista de engenharia,
onde diversas partes interagem para atingir um objetivo maior, s&o desenvolvidos
modelos, sejam eles fisicos, matematicos, computacionais, etc. Isso porque,
dependendo da dimensdo e complexidade do sistema, fica invidavel sua
implementacéo real para posterior avaliacdo. Dessa maneira, 0 modelo € uma
representacdo do sistema real, com suas principais partes e respectivas interagdes
(EYKHOFF, 1974).

A modelagem pode ser definida como (CENTENOQO, 1996): a prética de se
construir modelos para representar sistemas reais existentes, ou sistemas
hipotéticos, e realizar experimentos com estes modelos para: (1) explicar o
comportamento dos sistemas; (2) construir teorias ou hipdteses que consideram o
comportamento observado; (3) aumentar o desempenho do sistema; (4) projetar
novos sistemas com o0 desempenho desejado; e/ou (5) descrever comportamentos
futuros ou o efeito produzido por mudancas no conjunto das entradas.

A simutacdo de experimentos por sua vez € uma das técnicas usadas para
avaliar os sistemas. Nela o modelo recebe entradas similares as situagdes reais,
para que seu desempenho seja estudado e diferentes solugbes possam ser
comparadas.

Com relagdoc a outras teécnicas de andlise de modelos de sistemas, a
simulacdo apresenta algumas vantagens. Sao elas (JUNQUEIRA, 2006):

» a capacidade de analisar modelos de complexidade arbitraria, ou seja, € uma
técnica relativamenie flexivel, pois os modelos ndo precisam de muitas
simplificagdes como nos casos analiticos;

e 0 custo dos dados coletados atraves de simulagéo s&o relativamente menores do
que os obtidos através do sistema real;

e a analise por simulagcido pode ser desempenhada com o minimo risco para os
envolvidos na aquisicdo e operacdo do sistema, pois é possivel realizar mudancas
no projeto de um sistema antes que este seja implementado, com apenas uma

fracdo do custo que se teria caso o sistema tivesse sido implementado;

16

e a credibilidade frente aos responsaveis pela tomada de decisées, visto que
recursos, como animacgao, podem ser utilizados para ilustrar qudo o modelo se
aproxima da realidade;

s a versatiidade de um mesmo conjunto de métodos de simulacdo poder ser
utilizado para analisar diversos sistemas.

Entretanto, em sistemas com elevado grau de complexidade séo necessarias
técnicas especiais para viabilizar a analise por simulacdo ja4 que os modelios em
questio também so relativamente complexos. Nestes casos, maior énfase tem sido
dada para simulagio paralela e simulagio distribuida. Na simutagéo paralela a
execucdo dos modelos é feita em computadores paralelos. Ja na simulagao
distribuida a execucao dos modelos é realizada em computadores dispersos
geograficamente, conectados através de redes de comunicagéo tipo LAN (local area
network) ou WAN (wide area network), criando assim um “grande computador” que
s6 existe no espago virtual. Nas duas abordagens, sdo usados varios
processadores, que participam no processo de simulagdo (FUJIMOTO, 1999;
BANKS et al., 2000).

Dentre as razbdes para o uso dessas técnicas destacam-se:

« reduzir o tempo de execugdo dos modelos de grande porte e complexidade;

« explorar recursos computacionais apesar de estarem dispersos geograficamente;

s explorar a integracdo de ferramentas de modelagem e simulacéo, instalados em
maquinas de diferentes fabricantes;

» assegurar redundancia de recursos visando maior tolerancia a fathas.

2.1. Simulacgao distribuida, baseada em rede de Petri

Modelos baseados em sistemas a eventos discretos (SEDs) séo
intensamente usados para descrever, analisar e controlar processos em sistemas
produtivos, como por exemplo em ambientes de rede de computadores e
manufatura, pois o que caracteriza este processo é o fato de sua dinamica ser
governada pela ocorréncia de eventos instantaneos. Assim, a evolugao de estados
destes sistemas & baseada em regras que definem as condigdes para a ocorréncia

17

de eventos e o resultado da ocorréncia destes eventos (CASSANDRAS;
STRICKLAND, 1992).

A rede de Pefri (RdP) é uma técnica de modelagem grafica e matematica
originalmente desenvolvida para caracterizar operacbes de concorréncia em
computadores (MOORE; BRENNAN, 1996). Desde entbo eia tem sido utilizada para
a modelagem de sistemas dindmicos em diversas areas (SRINIVASAN;
VENKATASUBRAMANIAN, 1998), como por exemplo: protocolos de comunicagao,
algoritmos distribuidos, arquiteturas de computadores, interagcdo homem/maquina
(ELKOUTBI; KELLER, 1998).

Detalhes do funcionamento da rede de Petri (RdP) podem ser encontrados
em MIYAGI, 1999, mas por nao fazer parte do escopo do presente texto eles sdo
aqui omitidos, isto &, o foco aqui € a simulagdo distribuida com RdP, por isso, sé
serao apresentadas aqui as caracteristicas que fazem da RdP um boa ferramenta
para modelar, analisar e controlar sistemas produtivos concorrentes, assincronos,
distribuidos e paralelos (INAMASU, 1995).

As principais caracteristicas da RdP, segundo INAMASU (1995) séo:

+ permitir a representacéo de diferentes tipos de sistemas;

¢ ser um modelo que pode ser formalizado matematicamente;

e ser um modelo grafico de aprendizado relativamente facil, funcionando
como linguagem de comunicagéo entre especialistas de diversas areas;

e permitir a representacéo de paralelismo e sincronizagao;

¢ representar aspectos estaticos e dinamicos;

e possuir métodos e ferramentas de andlise, inclusive comerciais.

MOORE e BRENNAN (1996) apresentam mais algumas caracteristicas da RdP:

e pode-se considerar regras de tempo associadas com "transicdes para
representar o tempo requerido para completar uma atividade. Esta regra
pode ser estocastica, baseada em uma fungdo de probabilidade, um valor
computado, ou uma constante.

Regras de decisdo podem ser associadas com os lugares € resolvem casos
onde mais de uma transi¢cdo esta habilitada pela mesma marca ou conjunto

de marcas (transigdes em conflito);

! Termos especificos da rede de Petri (como transicdo, lugar, marca, arco habilitador, arco inibidor)
estdo com lefra “Times New Roman” tamanho 12.

18

e pode-se considerar atributos nas marcas para especificar um conjunto de
caracterfsticas associadas com a marca. O valor destes atributos pode ser
mudado nas transi¢des e podem ser passados para algoritmos externos € o
resultado incorporadc ao modelo de RdP;

e pode-se considerar outros tipos de arcos, que proporcionam uma i0gica

adicional & transigao: o arco habilitador, que habilita a transigdo caso 0 lugar
a que se refere esteja marcado, sem consumir a marca; € 0 arco inibidor,
que desabilita a transi¢io caso o lugar a gue se refere esteja marcado.

Dentre as RdP propostas (conforme as necessidades dos sistemas
modelados/estudados), a RdP orientada a objetos tém recebido atencao por parte
dos pesquisadores. Existem diferentes enfoques para RdP orientadas a objetos, mas
a que cobre a maior diversidade de caracteristicas/conceitos de objetos € a OPN
(Object Petri Net) proposta por LAKOS (1994, 1995).

A OPN apresenta uma completa integragdo entre os conceitos de RdP e
orientagdo a objetos, resultando na possibilidade de se modelar diretamente
sistemas com niveis arbitrarios de atividade, bem como apresentar flexibilidade na
especificacdo da interface dos objetos, sejam elas sincronas ou assincronas.

A OPN possui també&m arcos habilitadores e inibidores que facilitam a definicdo
de fungdes de acesso que provéem informagdes sobre o estado do objeto sem
altera-lo. A utilizacdo destas funcées pode facilitar significativamente a
modularizagao dos projetos em RdP.

Ainda com relacdo a OPN, cada RdP pode ser definida como uma classe, que
pode ser instanciada em um diferente nimero de contextos (inclusive como marcas).
Desta forma, uma marca pode encapsular uma sub-rede.

Isso implica que a OPN suporta a possibilidade de miultiplos niveis de
atividade na rede e o projetista é livre para decidir como varias atividades devem ser
compostas (se um objeto em particular deve ser ativo (que requisitaf/invoca uma
acdo), passivo (que realiza uma agéo/atividade solicitada por outro objeto) ou
ambos) (JUNQUEIRA, 2008).

Ja na computacdo paralela aplicada a RdP, cada processador trabalha com
uma lista local de transi¢des, lugares e arcos, isto &, uma sub-RdP local, ao invés de
uma lista global contendo todos os elementos da RdP, porém, essa abordagem traz
problemas aos projetistas quanto a maneira de fratar a interacdo entre as sub-RdP
que compde a RdP global.

19

Para solucionar esse problema muitos autores sugerem a modelagem
hierarquica, por exemplo, a abordagem adotada por JUNQUEIRA (2006), onde o
sistema complexo é dividido em sub-sistemas (e em sub-modelos) mais faceis de se
processar e validar e, onde existem regras especificas de estruturacdo e conexao
entre as partes.

Na divisdo dos sistemas em sub-sistemas, deve-se definir a forma de
comunicacao enfre as partes do problema. Esta comunicacdo define tipos
especificos de interface que no caso de modelos baseados em RdP podem ser de
trés maneiras distintas, (JUNQUEIRA, 20086): interface entre modelos por fusdo de
lugares, interface entre modelos por fuséo de transi¢bes e interface entre modelos por
arcos habilitadores.

Na interface enfre modelos por fusdo de lugares, dois lugares de modelos
distintos se comportam como um s6. Contudo, essa abordagem apresenta um
problema quando a chamada de um modelo ocorre simultaneamente por dois outros
modelos, isto &, ndo se define quem fez 0 chamado primeiro.

Nz interface entre modelos por fusdo de transi¢cGes, usa-se procedimento e
interpretagéo anélogos da técnica acima, entretanto, essa técnica nao apresenta
problemas em caso de mais de uma chamada no mesmo modelo.

Na interface entre modelos por arco habilitador, usam-se arcos habilitadores para
habilitar transicdes dos modelos interligados, de modo a garantir o fluxo correto das
informagdes. Contudo, nessa abordagem, pode nao ocorrer a alteracido de um
estado, pois a habilitagdo do préximo estado de disparo, nao implica na inibigéo do
estado anterior, ou seja, qualquer transi¢io pode disparar primeiro.

Ainda, de acordo com trabalho de JUNQUEIRA (2006) a modelagem de sistemas,
considerando a sua simulagdo distribuida, apresenta seis etapas distintas, como

mostra a Figura 1.

20

{mcio

Defimgdo do problems delmmandes o
“escopy” dosistema produtsva em estudo

< '

Detalhumentos sucessios v iiulo 2
idenniticagsio dos elementos bisicas yue
campdem o xisiema e suas mterfaces

Top-down

, !

Criagiio de objeles

———
Msbelapens dos elementuos bisicos ems
Redes de Petst

Cieragho de componentes #

Bottom-up
.

!

Geragho do apheaino

Fim do
metodo
Figura 1. Diagrama do método de modelagem de sistemas.

Etapa 1 — Definicdo do problema delimitando o escopo do sistema produtivo
em estudo

Nesta etapa deve-se delimitar o0 escopo do sistema produtivo em estudo, ou
seja, quais departamentos, equipamentos e pessoas (ambos podendo ser vistos
como recursos) sdo utilizados, quais as funcionalidades/caracteristicas e processos
que se pretende modelar e analisar (através de simulagéo).

Etapa 2 —~ Detalhamentos sucessivos visando a identificagcdo dos elementos
basicos que compdem o sistema e seus relacionamentos
Nesta etapa cada funcionalidade relacionada na etapa anterior deve ser
detalhada até o nivel requerido pelo modelista.
21

Etapa 3 — Modelagem dos elementos basicos em redes de Petri (RdP})
Nesta etapa as funcionalidades detathadas no item acima sdo modeladas em
RdP compondo o que é chamado de classes.

Etapa 4 —- Criagdo de objetos
Aqui os objetos sao gerados baseados no conceito de classes.

Etapa 5 — Geragdo de componentes
S&o gerados os componentes através da juncdo de objefos com suas

interagoes préprias.

Etapa 6 -~ Geragao do aplicativo
Sé&o gerados os aplicativos através da juncdo de componentes.

2.2. Ambiente de simulagao distribuida

Uma simulagéo distribuida € constituida por processos i6gicos que interagem
via troca de mensagens, as quais possuem um registro de tempo associado. Um
processo obedece ao relacionamento de causa e efeito, se € somente se cada
processo l6gico executa os eventos em ordem nao decrescente do registro de tempo
(FUJIMOTO, 1989). No presente caso, considera-se que os processos l6gicos
podem ser executados em computadores dispersos fisicamente.

Entre os meios de implementagdo de um ambiente de simulagéo distribuida,
neste capitulo apresentam-se dois métodos que tém sido considerados para a
comunicagao entre computadores: sockefs e CORBA.

22

2.2.1. Baseado em sockets

Uma das primeiras formas de se desenvolver aplicagdes distribuidas em um
ou mais computadores foi através do uso de sockets. Com isso foram desenvolvidas
diversas aplicagoes tipo cliente/servidor onde cliente(s) e servidor poderiam estar em
computadores diferentes, distantes umas das outras. Atualmente existem outras
ferramentas de linguagem para implementar software distribuido, mas ¢ interessante
notar como vérios dos conceitos da AP! (aplication program interface) de sockets
permanecem verdadeiros ainda hoje (Donahoo, 2001).

As APls estdo disponiveis para muitos sistemas operacionais, incluindo
sistemas usados em computadores pessoais (por exemplo, Windows NT e Windows
98 da Microsoft) como também varios sistemas UNIX {por exemplo, Solaris da Sun
Microsystems).

O sockets se originou como parte do sistema operacional BSD UNIX. O
trabalho foi financiado pelo governo americano, através da qual a University of
California em Berkeley desenvoiveu e distribuiu uma versdo de UNIX que continha
protocolos de ligagdo inter-redes TCP/IP. Muitos vendedores de computadores
portaram o sistema BSD para seu hardware, € o usaram como base em seus
sistemas operacionais comerciais. Deste modo, a APl de sockets se tornou um
padrao na indtstria (The Java™ Tutorial, 2006).

Em se tratando de hardware, os sockets sido como “encaixes” para o
processador, isto é como moédulos de meméria entre outros componentes do
computador. Do ponto de vista de software, os sockets s&o mddulos de programas
que conectam os aplicativos ao protocolo de rede de comunicagéo, facilitando o
trabalho do programador, que precisa apenas instruir o programa a abrir um dos
sockets disponiveis. O programa passa entdo a enviar e receber dados atraves da
rede (Donahoo, 2001), numa arquitetura de cliente/servidor.

A tecnologia cliente/servidor € uma arquitetura na qual o processamento da
informagdo é dividido em moddulos ou processos distintos. Um processo é
responsavel pela manutengao da informacgao (servidores) e outros responsaveis pela
obtengio dos dados (os clientes).

Os processos cliente enviam pedidos para o processo servidor, e este por sua
vez processa e envia os resultados dos pedidos.

23

Nos sistemas cliente/servidor o processamento tanto do servidor como o do
cliente sdo equilibrados.

Geralmente, os servicos oferecidos pelos servidores dependem de
processamento especifico que sé eles podem fazer. O processo cliente, por sua vez,
fica livre para realizar outros trabathos. A interacdo entre os processos cliente e
servidor & uma troca cooperativa, em que o cliente & o ativo e o servidor reativo, ou
seja, o cliente requisita uma operacéo, e neste ponto o servidor processa e responde

ao cliente.
A Figura 2 mostra uma representagdo esquemética da utilizacao de sockets:

CLIENTE ——— PROTOCOI.OROTOCOLOS — SERVIDOR
sockets DE REDE DE REDE sackets

Figura 2 - Esquema representando a comunicacgfio entre servidor-cliente via sockels e interet.

A programacgao dos sockets difere de um protocolo de /O convencional
porque um aplicativo deve especificar diversos detalhes para usar um socket. Por
exemplo, um aplicativo deve escolher um protocolo de transporte em particutar,
fornecer o endereco de protocolo de uma maquina remota e especificar se o
aplicativo € um cliente ou um servidor. Cada socket tem assim diversos parametros
e, um aplicativo deve fornecer valores especificos para cada um deles (The Java™
Tutorial, 2006).

Para evitar que exista uma unica fungdo de socket com argumentos
separados para cada opg¢do, a APl de sockets foi definida com muitas fung¢des.
Essencialmente, um aplicativo cria um socket e entdo invoca fungbes para
especificar em detalhes como sera usado o socket. A vantagem dessa abordagem é
que a maioria das fungdes tem trés ou menos argumentos; a desvantagem € que um
programador deve se lembrar de chamar multiplas fungdes ao usar sockets
(Donahoo, 2001).

No caso do compilador Microsoft Visual C++, a programagéo consiste na

adicao de um objeto 2sock() (tanto para o programa cliente como para o programa

? Fungsio especificas do protocolo de comunicag#io sockets estiio com letra “Verdana” tamanho 12.
24

servidor) na definicdo de seus principais atributos e na confecgdo das subrotinas

associadas a cada atividade de conexdo (método).

Objeto cliente

O objeto cliente & aquele que deseja acessar alguma informagéo disponivel
no servidor (Donahoo, 2001).

Seus atributos elementares s&o:
servIP: geraimente utiliza-se o IP do servidor a se conectar.
servPort: determinacao da porta onde sera efetuada a conex&o com a Internet via
sockets.

Os principais métodos do objeto cliente sao:
connect: atividades realizadas pelo cliente quando este se conecta com o servidor.
closesocket: atividades realizadas pelo cliente quando este se desconecta do
servidor.
send: atividades realizadas pelo cliente quando o este envia informagdes para o
servidor.
recv: atividades realizadas pelo cliente quando este recebe informacgdes do servidor.
WSAStartup: carrega a biblioteca winsock, que nada mais é do que a biblioteca do

windows que contém as fungdes do sockefs.

Objeto servidor

O objeto servidor & aquele que gerencia a conexao com clientes por conter
informagdes desejadas pelos mesmos (Donahoo, 2001).

Seu atributo elementar & :
servPort: determinagdo da porta onde sera efetuada a conexdo com a Internet via
sockets.

25

Os principais métodos do objeto servidor s&o:
listen: atividades realizadas pelo servidor quando quando o cliente se conecta.
closesocket: atividades realizadas pelo servidor quando o cliente se desconecta.
accept: atividades realizadas pelo sefvidor quando o cliente envia informacoes.
send: atividades realizadas pelo servidor quando ele envia informagdo para o
cliente.
WSAStartup: carrega a biblioteca winsock, que nada mais € do que a biblioteca do

windows que contém as fungdes do sockets.

Seqiiéncia de Chamadas de Procedimento com Sockets

Um cliente e um servidor devem selecionar um protocolo de transporte que
suporte o servigco sem conexao ou um que suporte o servico orientado a conexéo. O
servico sem conex3o permite a um aplicativo enviar uma mensagem a um destino
arbitrario a qualguer momento; o destino ndo precisa concordar se ele aceita a
mensagem antes da transmiss&o acontecer. Em contraste, um servi¢o orientado a
conexdo exige que dois aplicativos estabelegcam uma conexao de transporte antes
que possam ser enviados dados.

Para estabelecer uma conexdo, os aplicativos interagem com o software de
protocolo de transporte em seus computadores locais, e os dois moédulos de
transporte trocam mensagens através da rede de comunicacdo. Apés ambos 0s
lados concordarem que uma conexao seja estabelecida, os aplicativos podem enviar
dados (The Java™ Tutorial, 20086).

A Figura 3 mostra a seqiiéncia de procedimentos com sockets que chamam o
cliente e servidor no arquivo de teste que foi impiementado e que tém seus codigos
listados no Anexo A desse trabalho.

Nele, o servidor deve chamar a fungéo listen (que abre a porta configurada e
fica esperando por uma mensagem) antes que o cliente chame a fungéo connect
(que se conecta na porta indicada pelo servidor).

26

SERVIDOR CLIENTE

WSAStartup WSAStartup
Il !
socket socket
w -
Bind connect
v
listen -
send
b
p— tccept +
l —f rECV
Tecv -
l close
send
recy
close

Figura 3 - A sequéncia de chamadas de procedimento com sockets no cliente e servidor exemplo.

Como mostra a Figura 3, o servidor chama nove procedimentos de socket e o cliente
chama seis. O cliente come¢a chamando os procedimentos de biblioteca
WSAStartup para carregar a biblioteca do sockets para windows. O cliente entéo
chama socket para criar um socket e connect para conectar o socket a um sefvidor.
Uma vez que é estabelecida a conex&o, o cliente chama send para enviar os dados
ao servidor e em seguida chama repetidamente a fungdo recv para receber do
servidor o eco do que foi recebido por ele.

Finalmente, ap6s os dados terem sido recebidos, o cliente chama close para
fechar o socket.

O servidor chama também WSAStartup para carregar a biblioteca do sockets
antes de chamar socket para criar um socket. Uma vez que um socket foi criado, 0

27

servidor chama bind para especificar uma porta de protocoio local para o socket e
listen para colocar o sockef em modo passivo. O servidor entdo insere um laco
infinito em que ele chama accept para aceitar a proxima requisicao de conexao
recebida, recv para receber uma mensagem do cliente, send para enviar ao cliente
o que foi recebido, novamente recv para avaliar se existe mais informagdo por
receber e finalmente close para fechar a nova conexdo. Depois de fechar uma

conex3o, o servidor chama accept para tratar a préxima conexéo recebida.

2.2.2. Baseado em CORBA

CORBA (common object request broker architecture) € um padrao proposto
por uma entidade chamada de OMG (object management group) cujo proposito e
permitir interoperabilidade entre aplicagdbes em ambientes distribuidos e
heterogéneos. Este padrio estabelece a separagéo entre a interface de um objeto e
sua implementacéo. Para descricdo da interface do objeto, 0 CORBA oferece uma
linguagem para definicdo de interfaces. Para implementagdo do objeto CORBA,
pode ser utilizada qualquer linguagem de programagéo que tenha o binding (termo
usado para denotar a chamada de um recurso (biblioteca) a partir de um programa
para o qual esse recurso nio é nativo) para CORBA (como XML por exemplo)
(OMG, 2006).

A arquitetura CORBA é composta por um conjunto de btocos funcionais que
usam o suporte de comunicagdo do ORB (object request broker) - o elemento
responsavel por coordenar as interagdes enire os objetos, interceptando as
chamadas dos clientes e direcionando-as para o servidor apropriado (OMG, 2006).

Todo objeto CORBA possui uma identificagao, chamada referéncia do objeto,
que & atribuida pelo ORB na criagdo do objeto. Para usar um objeto, o cliente deve
obter a sua referéncia, pois na invocacio de um método sobre o objeto, o ORB o
identifica através de sua referéncia (PANDOLFI, 2005).

O CORBA fornece as abstracbes e o0s servicos necessarios ao
desenvolvimento de aplicagdes distribuidas e portaveis, sem a necessidade de que
o programador se preocupe com detalhes de baixo nivel. Ele fornece suporte para

28

varios modelos do tipo pedido-resposta facilitando a localizacdo e a ativagdo
transparente de objetos, e para a independéncia de linguagens de programagao e
de sistemas operacionais, 0 que propicia uma base sélida tanto para a integragéo de
sistemas legados quanto para o desenvolvimento de novas aplicagbes distribuidas
(OMG, 2006).

Vantagens:

A principal vantagem do uso de CORBA, e dos outros padroes OMA (object
architecture model), é sua capacidade de permitir o desenvolvimento de aplicagbes
que s&o interoperaveis em um ambiente de programacéo de alto nivel. Isto é feito de
maneira independente de sistema operacional, linguagem de programacao,
protocolos e topologia da rede de comunicagdo. CORBA utitiza recursos de
orientacdo a objetos como polimorfismo, heranga e encapsulamento, facilitando a
implementagdo de componentes reutilizaveis de software. Esta arquitetura prové
ainda um conjunto de servigos abertos e padronizados (CORBAServices e
CORBAFacilities) que facilitam a implementacdo de aplicagdes distribuidas (Souza,
2006).

CORBA é empregado também na integragao de sistemas legados, através da
definigdo de interfaces [DL (interface definition language) para aplicacbes destes
sistemas.

A IDL é independente de linguagem, suportando multiplas “amarractes” de
linguagem a partir de uma Unica especificagéo. Sendo assim, interfaces de software
precisam ser escritas apenas uma vez.

A linguagem também é independente de plataforma. Uma interface assim
especificada se mostra consistente com qualquer ORB e plataforma. Seu uso evita,
portanto, problemas de portabilidade de plataforma, que podem ser provenientes de
sistemas operacionais e interfaces definidas pelo fabricante.

Deve-se salientar, também, que a iDL é puramente uma especificacao. Nao
ha restricbes quanto a implementagdes do objeto que define as interfaces, baseado
em CORBA. Essas implementacdes podem utilizar qualquer linguagem e tipo de

29

algoritmo, que ficam escondidos dos clientes que utilizam a interface. Essa
separagio € uma das grandes vantagens da abordagem de CORBA, pois garante a
reusabilidade e a reducéo da necessidade de construgdo de software.

Desvantagens

O CORBA apresenta um custo relafivamente elevado de aprendizagem e
utilizagdo. CORBA é uma tecnologia que envolve conceitos avangados de
programacao orientada a objetos e passivel dos problemas encontrados no uso de
frameworks.

A compreensdo dos conceitos de ORB e dos servicos de objetos com sua
posterior utilizacdo bem sucedida constitui um processo relativamente demorado e
custoso de aprendizado, normalmente baseado em tentativas e erros (CORBA em
C++, 2006).

A maioria das implementagbes de dominio publico provém apenas as
funcionalidades basicas do ORB.

A integracao de clientes CORBA com servidores implementados para ORBs
de fabricantes diferentes € ainda uma tarefa nao trivial. Isto deve-se principaimente a
diferencgas relacionadas aos padroes implementados por cada ORB (CORBA em
C++, 2006).

30

3. SISTEMA MINICIM INSTALADO NO PMR-EPUSP

O MiniCIM (nome do sistema flexivel instalado no PMR-EPUSP), é
considerado neste trabalho como estudo de caso para comprovagéo das solugbes
propostas.

Dessa maneira, seus componentes foram estudados para que seu
funcionamento fosse correto. Portanto, nesse capitulo é apresentado o sistema de
funcionamento do MiniCIM, bem como seus componentes e seus respectivos modos

de operagéo.

3.1. MiniCIM

O MiniCIM (CIM - Computer Integrated Manufacturing) (Rembold; Naji; Storr,
1994) da empresa Festo considerado neste trabalho & um sistema de manufatura
integrado por computador que realiza um processo de montagem automatica de
diferentes pecas (Festo, 1998). Cada peca € composta por: uma base (cilindro}, de
trés cores possiveis (preta, prateada e rosa); um pino para sustentar uma moia, de
dois tipos possiveis (preto ou cinza); a mola citada e uma tampa, ambos comuns aos
trés tipos. De acordo com a cor da base, as pecas montadas assumem diferentes
composicdes (Figura 4).

g y - Y Tampas
\ { \
= = % Mlolas
\ \ \

Pi d
L ; % Sﬁ;:ﬂsﬂ:
+ \ \

Bases
- | . (Cilindros)

Figura 4 — Montagem dos diferentes cilindros pelo MiniCIM.

31

3.1.2. Descricdo Geral

O MiniCIM é um equipamento para fins de freinamento especializado da
empresa Festo que, na configuracdo disponivel no PMR-EPUSP é composto de 5
estacbes de trabatho, cada uma capaz de ser operada individualmente ou, no
contexto de um sistema integrado e automatizado, cada estac&o possui certa
autonomia na execucio de suas tarefas. As estagbes de trabalho séo as seguintes:
Estagao de Testes; Estagéo de Distribuigao; Estagao de Montagem com Unidade de
Execucido da Montagem; Sistema Inteligente de Transporte (SIT); Estagao de
Controle de Célula de Trabalho (Figura 5).

A Estagéo de Distribuicdo armazena as bases (cilindros) e as encaminha ao
processo de produgdo de acordo com a demanda. Ja a Estacdo de Testes é
responsavel pela identificago da cor (prateada, rosa ou preta) e teste da altura das
bases (cilindros) vindas da estacdo de distribuicdo. Esta estacdo €& também
responsavel por descartar pecas rejeitadas nestes testes.

O Sistema Inteligente de Transporte (SIT) conta com uma esteira de
transporte e cinco carros (paflets). Este sistema de transporte tem pré-definido
aiguns locais distintos para a parada dos carros, sendo um deles a Estacédo de
Testes e outro a Estacdo de Montagem. O SIT destina-se a transportar as bases
(cilindros) identificadas e testadas da Estagdo de Testes para a Estagdo de
Montagem, onde a montagem da peca ¢ finalizada. As pegas montadas séo entao
transportadas pelo SIT para um outro local previsto para a armazenagem das pecas
e liberagéo dos carros (palfets).

32

Estagédo de Estagéo de

Distribuigho Testes ?LT
J —
— s S
: “\‘-‘:.,‘ut)]
1) [l e
e L :
i
- [
i)

Estagéo de
Montagem

Estagéo de Controle de
Célula de Trabalho

Figura 5 — Esquema ilustrativo do sistema MiniCIM.

3.1.3. Estag¢do de montagem

A estacdo de montagem (Figura 6) é responséavel pela confeccao da pecga
final, por juntar todos os elementos que a constitui.

Para isso, a esta¢do possui um manipulador que executa as tarefas, na
seguinte ordem: recolhe do SIT o pallet com a base, pega o pino adequado para a
base e o instala na base, coloca uma mola no pino, coloca a tampa ¢ a fecha, e por
fim recoloca o pallet de volta no SIT com a peca pronta.

33

Armazenamento _L T) | Armazenamento
de Tampas _ 4| deMolas
3 o
=il B
Armazenamento
de Pinos

Figura 6 — Estagdo de montagem do MiniCIM.

3.2. Comunicacgao Profibus

O MiniCIM adota o Profibus para a rede de comunicacdo entre os CLPs que
formam o sistema de controle da linha de producéo.

3.2.1. Histéria

O Profibus comecou como um projeto apoiado por autoridades puablicas, que
iniciou em 1987 na Alemanha. Dentro do contexto deste projeto, 21 companhias e
institutos uniram forgas e criaram um projeto estratégico fieldbus. O objetivo era a
realizacdo e manutengdo de um barramento de campo bitserial, sendo o requisito
basico a padronizagdo da interface de dispositivo de campo. Por esta razado, os
membros das companhias do ZVEI (Associacdo Central da Industria Elétrica Alema)
concordaram em adotar um conceito técnico para manufatura e automacéo de
processos (Profibus, 2006}).

Um primeiro passo foi a especificagdo do protocoio de comunicacdes
compiexas chamada de Profibus FMS (especificacao de mensagens fieldbus), que
foi “costurado” para atender as exigéncias de farefas de comunicagao.

Mais adiante, em 1993, tem-se a conclusdo da especificacdo do Profibus DP
(Periferia Descentralizada).

34

Baseado nestes dois protocolos de comunicagdo e, acoplado com o©
desenvolvimento de numerosos perfis de aplicagdes ocrientadas, o Profibus comegou
seu avanco inicialmente na automagio manufatura, e desde 1995, na automacao de
processos. Hoje, o Profibus € um barramento relativamente conhecido no mercado
mundial.

O Profibus é um padrio de rede de comunicagdo de campo, aberto e
independente de fornecedores, onde a interface entre dispositivos permite uma
ampla aplicagdo em processos, manufatura e automacéo predial.

Ele também pode utilizar como meio de transmissdo qualquer um dos
seguintes padrdes: RS-485, IEC 61158-2 ou fibra dtica.

c e
PROFIBUS on Ethernet/ TCP-IP

= |

=" | -
R b 3
-

Sompieny ™

Process

Coll-
lavel

e

RS-4B5/FO

Field-
level

Costs
=
Sansor./
Actustor-

—ﬂ
Explosion protection

Figura 7 - Comunicag&o Industrial.

3.2.2. Profibus-DP - Periferia Descentralizada (Decentralized Periphery)

O Profibus especifica as caracteristicas técnicas e funcionais de um sistema
de comunicagdo industrial, através dos quais dispositivos digitais podem se
interconectar, do nivel de campo como os (CLPs) até o nivel de células (como os
sensores, atuadores, valvulas) (Figura 7).

35

Trata-se de um sistema multi-mestre que permite a operagado conjunia de
diversos sistemas de automacio, engenharia ou visualizagdo, com seus respectivos
dispositivos periféricos (por ex. O’s). Ele diferencia seus dispositivos entre mestres
e escravos.

Dispositivos mestres determinam & comunicacéo de dados no barramento.
Um mestre pode enviar mensagens, sem uma requisicio externa, sempre que
possuir o direito de acesso ao barramento (o token). Os mestres também s&o
chamados de estagdes ativas no protocolo Profibus.

Os dispositivos escravos s&o dispositivos remotos (de periferia), tais como
médulos de /O, véivulas, acionamentos de velocidade variavel e fransdutores. Eles
nao tém direito de acesso ao barramento e s6 podem enviar mensagens ao mestre
ou reconhecer mensagens recebidas quando solicitados. Os escravos também sao
chamados estagdes passivas.

O Profibus-DP, otimizado para alta velocidade e conexdo de baixo custo, foi
projetado especialmente para a comunicacdo entre sistemas de controle de
automacao e seus respectivos I/Os distribuidos no nivel de dispositivo.

3.2.3. Meio de transmissao RS-485

O padrio RS-485 é a tecnologia de transmissdc mais frequentemente
encontrada no Profibus. Sua aplicacao inclui todas as areas nas quais uma aita taxa
de transmissdo aliada a uma instalagdo relativamente simples e barata sao
necessarias. Um par trangado de cobre blindado (shieldado) com um unico par
condutor é o suficiente neste caso.

A tecnologia de transmissdo RS-485 é relativamente facil de manusear
(Tabela 1). O uso de par trangado nac requer nenhum conhecimento ou habilidade
especial. A topologia por sua vez permite a adicdo e remogéo de estagdes, bem
como uma colocacdo em funcionamento do tipo passo-a-passo, sem afetar outras
estagbes. Expansdes futuras, portanio, podem ser implementadas sem afetar as

estag¢des ja em operacéo.

36

Taxas de transmiss&o entre 9.6 kbit/s e 12 Mbit/s podem ser selecionadas,
porém uma Unica taxa de transmissdo deve ser utilizada para todos dispositivos no
barramento, quando o sistema & inicializado.

Na instalacdo do RS-485 todos os dispositivos séo conectados a uma
estrutura de tipo barramento linear que pode ser composto por varios segmentos.
Até 32 estacbes (mestres ou escravos) podem ser conectados a um Unico
segmento. O barramento é terminado por um “terminador ativo” do barramento no
inicio e fim de cada segmento (Figura 5). Para assegurar uma operacéo livre de
erros, ambas as terminagées do barramento devem estar sempre ativas.
Normalmente estes terminadores encontram-se nos proprios conectores de
barramento ou nos dispositivos de campo, acessiveis afravés de uma dip-switch. No
caso em que mais que 32 estagdes necessitem ser conectadas ou no caso em que a
distancia total entre as estagbes ultrapasse um determinado limite, devem ser
utilizados repetidores {repeaters) para se interconectar diferentes segmentos do
barramento.

O comprimento maximo do cabo depende da velocidade de transmissao
(Tabela 2). As especificagbes de comprimento de cabo na Tabela 2, sdo baseadas
em cabo Tipo-A, com os seguintes parametros:

- Impedancia: 135 a 165 Ohms
- Capacidade: < 30 pf/im

- Resisténcia: 110 Ohms/km

- Medida do cabo: 0.64mm

- Area do condutor: > 0.34mm?

Tabela 1 - Caracteristicas basicas do RS-485

Midia Cabo par trangado blindado. A blindagem pode ser omitida,
dependendo das condigbes eletromagnéticas do ambiente (EMC).

Namero de | 32 estagbes em cada segmento sem repetidores.
Estacoes Com repetidores pode ser estendida até 126 estacgées.

Conectores | Preferencialmente DB-9 para IP20.
M12, Han-Brid or tipo Hibrido para IP65/67.

37

Tabela 2 - Distancias baseadas em velocidade de fransmissdo para cabo Tipo A

Baud rate (Kbit/s) 9.6 19.2 193.75|187.5 | 500 |1500 12000

Distancia/segmento (m) | 1200 | 1200 1200 | 1000 |400 [200 100

Os cabos Profibus sao oferecidos por varios fabricantes. Uma caracteristica
particular é o sistema de conex&o rapida.

Durante a instalagéo, deve-se observar atentamente a polaridade dos sinais
de dados (A e B). O uso da blindagem é essencial para se obter alta imunidade
contra interferéncias eletromagnéticas. A blindagem por sua vez deve ser conectada
ao sistema de aterramento em ambos os lados através de bornes de aterramento
adequados. Adicionalmente recomenda-se que os cabos de comunicagido sejam
mantidos separados dos cabos de maior voltagem. O uso de cabos de derivac@o
deve ser evitado para taxas de transmissdo acima de 1,5Mbits/s. Os conectores
disponiveis no mercado permitem que o cabo do barramento “entre/saia’
diretamente no conector, permitindo assim que um dispositivo seja
conectado/desconectado da rede sem interromper a comunicagao.

Nota-se que quando problemas ocorrem em uma rede Profibus, cerca de 90%
dos casos sdo provocados por incorreta ligacdo efou instalagdo. Estes problemas
podem ser facilmente solucionados com o uso de equipamentos de teste, 0s quais
detectam falhas nas conexdes.

Para a conexao em locais com grau de prote¢éo P20, utilizam-se conectores
tipo DB9 (9 pinos). A definicdo da pinagem e esquema de ligagéo sdo mostrados na

Figura 8.

38

VP {6}
Estagio 1 Estagio 2

390 ¢
RXDITADP (3) () » O ©) ROTADP RANTD-P(3)

DGND {5 () QO (5 peND 20+

wEQ Qwew
ROTO-N(EH) O (8) ROTON i il
- Shielding =
Pmtn;thm P\'alo-ﬂlve 3%0 M
ground grotnd
DGND {5)
Cabo Ierrninac_ior de Bus

Figura 8 - Ligagdo e terminagdo para o RS-485

3.3. CLP estudado

Para o controle da estagdo de montagem do MiniCIM (apresentada na segao
3.1.3), é necessério o estudo de seu CLP, que no caso, € um Controlador
Programavel Siemens SIMATIC S7-300 com uma CPU 315-2 DP.

3.3.1. Controlador programavel §7-300

O SIMATIC S7-300 (Figura 9) & um controlador modular amplamente utilizado
em aplicagdes industriais centralizadas ou distribuidas de pequeno a medio porte.

Ele possui uma CPU que possibilita tempos de ciclo, até 1us por instrucao
binaria (Tabela 3).

Tabela 3 — Especificagcio do CPU 315-2 DP.

CPU 315-2DP

Meméria principal 64 Kbyte

39

Tempos de processamento

¢ Operagoes binarias

0,3usal,62yus

e Operagdes com palavras 1us

Faixas de enderegamento

« Area total de enderecamento de E/S 111 Kbyte
 Area de Imagem de processo E/S 128/128 byte

o Canais digitais totais

¢ Canais analégicos totais

max. 8192 (1024 centrais)
max. 512(max. 256 entradas
ou 128 saidas centrais)

interfaces Profibus DP

o NUmero de segmentos
integrado/CP342-5
e No. estagcées escravas DP por

(interfaces integradas / CP 342-5)

s Velocidade de transmisséo

DP|1/1

CPU | 64/64

12 Mbit/s

Este CLP dispde de diversos modulos de expansao que permite a adaptagéo

da configuracao para diferentes tipos de aplicacéo (Tabela 4):

Tabela 4 — Modulos de expansdo para o CLP SIMATIC S7-300.

Médutos de 1/O

- Digitais

- Analégicos

Mbduios de Comunicagao

-Profibus DP

-Ethernet

- AS-interface

- Serial Ponto-a-Ponto

- Modbus

Maédulos de Fungao

- Contadores rapidos

- Controle de posigéo

- Controle de motor de passo

- Controle em malha fechada

- Saidas de pulso rapida

40

Um total de até 32 mddulos de expansdo podem ser utilizados em uma
configuracéo centralizada.

A Figura 9 apresenta a estrutura do SIMATIC S7-300. E ela:

1 - Fonte de energia (opcional)

2 - Bateria de reserva (CPU 313 e acima)

3 - Conector 24 V DC

4 - Chave de operacgéao.

5 - Status e falhas (leds)

6 - Cartao de meméria (CPU 313 e acima)

7 - MPI(Interface muiti-ponto)

8 - Conector frontal

9 - Porta da frente.

Figura 9 - SIMATIC S7-300 design.

A programacéo do CLP SIMATIC S7-300 é realizada com apoio do software
STEPY disponivel no laboratéric do PMR-EPUSP na versdao SIMATIC STEP 7
Professional.

O STEP 7 Professional dispOe de recursos para tratar todas as linguagens de
programacdo contempladas na norma internacional IEC 61131. Sao efas: ladder

41

(LAD), diagrama de biocos de funcdo (FBD) e lista de instrugbes (STL),

complementadas por trés ferramentas:
- §7-GRAPH para a programacéo gréafica de controles seqlienciais.
- 87-8CL, a linguagem de alto nivel que visa facilitar o tratamento de tarefas mais

complexas.
-87-PLCSIM para a simulagao "offline" da sua solugéo de automacéo.

42

4. AMBIENTE PROPOSTO

Neste capitulo é descrito 0 ambiente de simulagdo distribuida proposto para
execucdo dos modelos a fim de verificar se tais sistemas atendem os objetivos para
os quais foram propostos.

A estrutura geral da parte de controle e supervisdo de um sistema produtivo
pode ser dividida em trés niveis hierarquicos conforme indicado na Figura 10. No
nivel diretamente relacionado com os sinais de atuadores e sensores e respectivos
dispositivos de controle o foco estd na comunicagdo e programacgao dos
controladores. Um conjunto destes controladores programaveis estdo conectados,
em geral, através de algum protocolo de comunicagao padrédo (como por exemplo o
Profibus na area industriaf), a um supervisor local que neste caso atua como um
gerenciador especifico de uma parte da planta que pode estar instalada
eventuaimente distante de outro supervisor ocal.

Através de uma infraestrutura como a internet, considera-se que estes
supervisores locais estdo conectados com os supervisores remotos, estabelecendo
com isto a devida integracao dos gerenciadores de plantas que compdem o sistema
produtivo independente de onde elas de fato, estdo fisicamente/geograficamente

instaladas.

43

Figura 10 — Ambiente proposto para simulago distribuida no sistema flexivel do PMR-
EPUSP.

Considerando como um estudo de caso, um sistema flexivel de montagem,
citado no capitulo 3, a seguinte simplificacio foi adotada:

- cada estacdo de trabalho esta emulando um supervisor local, isto €, cada
estagcdo de trabalho é vista como uma planta especifica com certo grau de
autonomia operacional cujas tarefas sdo gerenciadas por um supervisor local.

Esta simpiificacio & considerada adequada neste caso, pois o foco do
trabalho esta nos aigoritmos de processos distribuidos através de internet.

Dessa maneira, seria como se cada estagdo fosse uma fabrica diferente e
dispersa fisicamente, coordenadas por um sistema global, que coordena a produgao
como um todo. Assim, cada estacdo & controlada pelo seu servidor, que por sua vez

& controlado pelo servidor central do sistema.

Na comunicagao entre 0s supervisores locais e remotos através da internet,
foram estudados duas propostas: uma via sockefs e outra via middlewares (por
exemplo CORBA) e, com base no trabalho de Pandolfi (2005), foi desenvolvida uma
implementacao via sockets.

Observa-se ainda que dentre as varias estacbes de trabalho do sistema
flexivel de montagem considerado, a implementacao aqui foi desenvolvida apenas
para a estagdo de montagem que envolve tarefas de maior complexidade.

Quanto ao hardware, propde-se a instalacdo de um computador para cada
CLP do sistema produtivo, para que cada area tenha seu préprio servidor. Assim,
cada parte do sistema pode funcionar de modo independente do resto.

O uso de webcams também se faz necessario para que as imagens do
sistema produtivo sejam enviadas do computador local para o operador que esta no

computador remoto. Desta maneira, o monitoramento se torna mais eficaz.

4.1. O ambiente implantado

Para a implementacZo nesta etapa, o software desenvolvido para atender a
légica do sistema tem sua programagao dividida em trés partes distintas feitas em
C++ com interface grafica em plataforma Windows e arquitetura cliente/servidor.
Cada uma dessas partes tem uma func¢o especifica:

e a primeira parte diz respeito a “abertura” de comunica¢&o com o CLP,
com envio e recebimento de informagao (programa servidor que fica no
PC Local). Essa comunicagéo entre o computador local (que emula o
servidor) com o CLP da area de montagem, ndo foi desenvolvida
através do protocolo Profibus e sim pelo protocolo serial;

e a segunda parie € a comunicacdo via internet usando o artificio do
sockets para abertura e comunicacdo dos computadores que
participam do ambiente (tanto o programa cliente como ¢ programa
servidor possuem as funcionalidades do socketf).

e e a terceira parte se refere a programacgado do sistema produtivo, ou
seja, a construgdo de um programa de controle em cédigo C++, criou-
se uma linha de producdo que simula o funcionamento da area de

45

montagem. Contudo, é importante destacar que esse programa nao
estara dentro do CLP e sim do supervisor remoto (programa cliente
que fica no PC remoto).
Esta implementagdo de teste, para comprovagdo da comunicagdo existente
no ambiente proposto, tem a estacdo de montagem do sistema produtivo MiniCIM
controlado e supervisionado remotamente (Figura 11).

[]! <<= PCRemoto
— ;__,)"
<‘“,;|‘] Sockets

<# Sockets
{j < ;’ PC Local

CLP que confrola
a area de e
montagem 8

Atuadores Sensores

Figura 11 — Implementagao teste para um ambiente de simulag&o distribuida.

A seguir é apresentada cada uma das partes do ambiente que foi
implementado.

4.1.1. “Abertura” de comunicac¢io serial

46

Para a primeira etapa desse software uma comunicac&o serial com o CLP S7-
300 foi implementada na parte do servidor. Foram utilizados os recursos do Sismatic
S7-Prodave 6.0 da Siemens, que disponibiliza duas bibliotecas para serem utilizadas
no programa em C++. As bibliotecas em questdo tem seus cédigos listados no
Anexo B, assim como o codigo dos programas cliente e servidor do ambiente
implementado.

Tais bibliotecas, depois de referenciadas corretamente no programa, foram
usadas para “abrir” a comunicacdo com o CLP através do cabo serial e definir os
sinais nos conectores de saida do CLP, assim como ler os sinais nos conectores de
entrada do CLP. Observa-se que foi utilizado um conector RS-232 entre o
computador e o CLP, para transmitir os pacotes de dados do computador local para
os conectores devidos do CLP.

O programa servidor, que fica instalado no computador local, & que tem sua
tela de entrada apresentada na Figura 12, tem a fungéo de “abrir” a comunicagdo
com o CLP através da comunicac&o serial, invocando a fungao load_tool(}* e
passando os parametros de conexao que sdo: nimero da conex&o a ser criada, o
enderego da porta serial, a identificacdo adotada para essa conex&o, o numero do
rack (posigado da CPU do CLP no trilho de montagem, geralmente 0) e por fim o
nimero do siot {enderego da CPU, geralmente 2) da mesma.

Ao clicar em [Abir] a fungdo de abertura de conexao é executada sendo
possivel visualizar o sucesso da mesma pelo led de conex&o do conector RS-232
que muda de estado (fica On).

O programa principal fica constantemente lendo os sinais de saida e entrada
do CLP nos enderegos indicados e quando requisitado pelo cliente, atualiza os

sinais de saida.

} Fungdes especificas do programa implementado (como load_tool(), a_field_write(), e_field_read()
e a_field_read()) estdo com letra “Tahoma” tamanho 12.

47

Mostra o
status da
conexdo
com o
CLP

Apresenta o que
esta ligado ou
desligado has
enfradas do
CLP; na forma
de uma string
binaria de 8

Abrir conexdo e -

[SErwmoR_ |

Status da Conido

e

Ertrada

Socket
Conex%o cotn Chente:

N

0 que foi recabido:

«

Fahha de conexBo:

Salds

Para interagir com o CLP, as fungbes a_field_write{), e_field_read(),

Mostrao IP
do cilente

conectado

Mostra as
instrugdes que
foram recebidas do

Caso ocorra uma
falha de conexao,
envio ou
recebimento de

informagao, uma
mensagem que
explica a mesma é
apresentada

Apresenta o que
esta ligado ou
desligado nas
saidas do CLP; na
forma de uma
string binaria de 8

Botdo para
fechar a
janela

T Botao para T

“fechar” a
conexaoc com
o CLP

Figura 12 - Tela do servidor.

Botdo para
“abrir” a
conexao com o

a_field_read{) foram usadas para atualizar os sinais de saida, ler os sinais nas

entradas e ler os sinais nas saidas respectivamente. E importante ressaltar que o

processo de leitura e o processo de escrita estao relacionados com o hardware do

CLP, isto é, os mbdulos fisicos/cartdes. No caso de um cartdo de oito entradas

digitais e oito saidas digitais, por exemplo, a leitura, ou entrada de dados/sinais deve

ser no formato 00000000 em binario (caso esteja tudo desligado).

43

Caso ocorra uma
falha de conexao,
envio ou

Mostra o recebimento de
status da W Conexfo informagé&o, uma
conexao mensagem gue
com o explica a mesma &
servidor apresentada
L Status da corexdo com o Servidor MiniCim
- p— { Botdo para comecar
— Kok ACoEe Sl Tl a seqUéncia de
movimentos dos
Os demais | Pausa | Volts I atuadores da drea de
botdes servem montagem, gue
para: Rainicia simulam uma linha de
~[Pausa] pausar e - %TDP_I — produgao
a produgdo,
[Volta] para Conectado com o Sesvidor: ‘ Mostra o IP
voltar a . : idor
produgdo do E""adas'_ = e ggnﬁ:rt\;do
ponto que foi '_
pausado, T. T Apresenta o que estd
{STOP] para ligado ou desligado nas
parar a entradas ¢ saidas do
produgac CLP; na forma de uma
{Reinicia} para Cancelar Fechar string binaria de 8
voltar os ' m digitos.
afladoresia totéo para t Botdo para
posieEo miclal fechar a “fechar” a ,'?°""!‘,’, R e
janela conexao com Clop e ConeRa
o servidor com o setvidor

Figura 13 - Tela do cliente.

A tela do programa cliente, que fica instalado no computador remoto, é
apresentada na Figura 13. A programagdo do cliente nao contempla uma
comunicacao serial. Ele tem apenas a implementacdo em sockets e 0s comandos
para o controle do MiniCIM.

Ao clicar no botao [Abrir], o cliente abre a conexdo com o servidor e fica
constantemente recebendo as leituras da entrada e da saida do CLP.

Na parte dos comandos para o MiniCIM, existem os botdes [Comeca

Produg&o], [Pausa], [Reinicia] e [STOP]. Com esses quatro botdes é possivel
comandar uma linha de producéo que é apresentada na secfo seguinte.

4.1.2. Testes do sistema

Para avaliar o sistema implementado, alguns testes foram conduzidos no
MiniCiM instalado no PMR-EPUSP.
49

Os testes envolveram procedimentos de comando e monitoracéo
relacionados com a ativacao de atuadores e coleta de dados de sensores instalados
na estacdo de montagem, descrita na se¢éc 3.1.3.

Um exemplo da segiiéncia de comandos & demomstrado na Tabela 5, onde
os sinais dos cartdes de memoéria do CLP sdo apresentados. Por exemplo, para
descer o brago do manipulador na direcao de Z, deve-se enviar para o cartido de
meméria de endereco 16 a string binaria 00000100, acionando entdo o motor do
eixo.

A seqiléncia de comandos fica configurada no programa cliente. E do cliente
que parte a requisicdo para que o servidor execute a operagdo. Portanto, toda e
quaiquer implementaco especifica da atividade a ser desenvolvida, deve ser criada
pelo cliente.

Essa abordagem, de se fer a atividade no programa ciiente, é de grande
vantagem num sistema distribuido, o qual muitas vezes se mostra disperso entre em
0s continentes, pois dessa maneira, no caso de corregbes ou alteragoes os clientes
nao precisam se deslocar até o lugar do servidor e ainda, o0 mesmo servidor atua
como operador para inimeros clientes diferentes.

Tabela 5 — Passos da linha de produgao do estudo de caso.

Passos para a Produgao |

| Enderego
Passos do Movimento 0/ 1| 2|3 .4|5].6 g do cartdo
de memoria |
Desce o brago do I
manipuladornadiregédode | 0 | 0 | 0 | O | O | 1| O 0 16 i
7 \
1
Para o braco do '
) olfojo0f(010]|0}O 0 16
manipulador
Gira a garra no sentido
] 010 1 0|0 |00 0 16
horario |
Fecha a garra ilojo]loloflo]loO 0 16
Avanga o pistao que libera
0|00 |0O]|O0O;1]0O0 0 20
a tampa do buffer

50

Retira um pino preto do {
0|1 O,0f0)10]O0 0 20
buffer
L;Recolhe 0 pistao que retira
0|0 1 0|10 |0]O 0 20
a mola do buffer
Recolhe o pino que prende
abasenomeiodadreade | 0 | 0O | 0O [0 | O | OO 1 20
montagem
Avanga o pino que prende
abasenomeiodadreade | 0 | O o000 |01 0 20
montagem
Avanca o pistéo que retira
0|10, 0(0j0|0]|0O 0 20
uma mola do buffer
Retira um pino prata do
110 00|00/ O 0 20
buffer
Recolhe o pistdo que
liberou uma tampa do orto. o0 1]0]0 ¢ 20
buffer |
Abre a garra of1]0(olofofof o 16 :
Gira a garra no sentido ‘
0,0 o100} 0O 0 16
anti-horario |
Sobe o brago do :
manipulador na diregéode | 0 | 0 0O{ocf(1)10]0 0 16 l
z
Para o brago do
_ 0100|0000 0 16
manipulador

4.1.3. Comunicacdo via internet

Para a execugéo da comunicagao via internet, foi usado o artificio do sockets,
conforme foi estudado anteriormente neste trabalho.

51

No programa do servidor e do cliente, ao clicar no botao [Abrir] (Figura 12 e
Figura 13), os programas abrem uma conexo via socket que, no caso do servidor,
fica esperando um cliente se conectar € no caso do cliente, fica esperando um
comando para enviar.

Para que o programa servidor nio fique apenas esperando a conexio do
cliente, a funcéo de accept do socket fica numa thread, que é executada em
paralelo ao programa principal e que, quando recebe a conex&o, envia essa
informag&o para o programa principal que recebe os comandos e 0s executa.

4.1.4. Discussio dos testes realizados

Durante os testes realizados na estacédo de montagem, atuadores foram
acionados e estados de sensores foram lidos de um computador remoto. Para isso,
foi implementada uma comunicacado serial enfre o computador local e 0 CLP da
estacao de montagem, que funcionou sem atrasos e sem interrupgdes.

No caso da comunicacgéo via internet, os tempos de resposta também foram
satisfatorios, sendo, portanto, quase imediatas as respostas dos atuadores da
estagdo de montagem aos comandos dados no PC remoto.

Entretanto, a visualizacéo das imagens da estacdo de montagem (Figura 14),
enviadas pela webcam instalada junto ao computador local para o computador
remoto, ainda tem um delay muito grande. Contudo, espera-se que a proxima
geragao da internet diminuia esse delay de maneira significativa.

Figura 14 ~ Visualizagéo da estag&o de montagem pela webcam.

52

5. CONCLUSAO

Para comprovacdo do ambiente de simulacio distribuida proposto, foi
considerado um sistema flexivel de montagem por se tratar de um sistema produtivo
modular, ele serve ao propésito de se estudar cada parte individualmente para
posteriormente estuda-las como um Unico sistema.

Contudo, para a andlise compieta do ambiente proposto, é necessario que as
outras estagbes desse sistema produtivo estejam operando, como mostrado na
Figura 10, para que a interacdo entre os supervisores locais e 0s supervisores
remotos possa ser avaliada.

Quanto a comunicagao, o estudos realizados do protocolo Profibus deve ser
implementados na continuidade desse trabalho, quando todo o sistema produtivo
considerado for colocado no ambiente de simulgéo.

Ja para a comunicagdo via internet, foram consideradas duas abordagens:
sockets e CORBA.

O CORBA apesar de fornecer varias facilidades, como objetos independentes
de linguagem e plataforma, apresenta uma relativa dificuldade de programacao por
tratar-se de um formato de programar de aprendizado n3o trivial.

Ja o sockets se mostrou a melhor opgdo para o uso no projeto, pois tem um
meio de programagéo mais acessivel em C++, como demonstrado no presente texto,
e j& teve sua eficiéncia comprovada em trabalhos anteriores com o MiniCIM. Por
iss0, 0 sockets foi o protocolo escolhido.

Considera-se também, para o futuro desse frabalho, o advento da internet 2
que € a préxima geragdo da internet, tendo uma velocidade de 2,5 Gbps (bilhdes de
bits por segundo). Dessa maneira, o0 ambiente proposto trabalharia em tempo real,
néo importando a distancia dos supervisores Jocais entre si e com o supervisor
remoto.

Considerando-se que os principais conceitos foram assimilados através dos
estudos realizados, e que o ambiente de simulagéo distribuida implementado foi
testado com sucesso tanto na comunicacdo local como na comunicacdo pela

internet.

53

Por fim, vale ressaltar a importancia do estudo inicial, pois através dele
identificou-se os pardmetros para os ambientes de simulacdo distribuida baseada
em RdP, que envolvem a interface entre modelos por fusio de transicdes e a
modelagem hierarquica para simulagdo de sistemas complexos, bem como o
fechamento do escopo do caso de uso que foi aplicado apenas na estacdo de
montagem do MiniCIM, através de comunicagdo serial e ndo por Profibus, visto que
tal tarefa seria relativamente complexa para ser concluida ainda este ano.

5.1. Trabalhos futuros

Os estudos e pesquisas realizados sobre a comunicagdo Profibus serdo
posteriormente considerados na continuidade desse projeto, quando o ambiente de
simulagéo distribuida proposto for desenvolvido com o controle de todas as estacoes
do MiniCIM.

A incorporagé@o das imagens da webcam na interface grafica do cliente,
também sera considerada na continuidade do projeto.

54

6. REFERENCIA BIBLIOGRAFICAS

BANKS, J. (Chair) Simuiation in the future. In. Proceedings of the 2000 Winter
Simulation Conference, p.1568-1576, 2000.

CASSANDRAS, C. G., STRICKLAND, S. G. Sample Path Properties of timed
Discrete Event Systems in Discrete Event Dynamic Systems — Analizing
Complexity and Performance in the Modern World. New York: IEEE Press, 1992.

CENTENO, M. A. An Introduction to Simulation Modeling. In: Proceedings of the
1996 Winter Simulation Conference, pp.15-22, 1996.

DONAHOO, M. TCP/IP Sockets, The C version, 2001.

ELKOUTBI, M., KELLER, R. K. Modeling Interactive Systems with Hierarchical
Colored Petri Nets. In: Proceedings of the 1998 Advanced Simulation
Technologies Conference, p.432-437, Apr. 1998.

EYKHOFF, P. System identification: parameters and state estimation. London:
John
Wiley, 1974.

FESTO. Modulares Produktions-Sistem Station Prufen, Lernsystem Automatisierung
und Kommunkation. Esslingen: Festo Didactic Gmbh & CO, 1998.

FUJIMOTO, R. M. Parallel and distributed simulation. In. Proceedings of the 1999
Winter Simulation Conference, p.122-131, 1999.

INAMASU, R.Y., Modelo de FMS: Uma Plataforma para Simulacido e

Planejamento, 1995, 134p. Tese (Doutorado) — Escola de Engenharia de Séao
Carlos, Universidade de Sdo Paulo. Sao Carlos, 1995.

55

JUNQUEIRA, F. Modelagem e simulagéo distribuida de Sistemas Produtivos. Tese
de Doutorado, Escola Politécnica da USP, 2006.

LAKOS, C. A., The Object Qrientation of Object Petri Nets. In: Workshop on Object
Oriented Programming and Models of Concurrency, 1995.

LEE, W. B., LAU, H. C. W. Muiti-agent modeling of dispersed manufacturing
networks. Expert Systems with Applications, No. 16, p.297-306, 1999.

MIYAGI, P. E., Controle Programavel - Fundamentos do Controle de Sistemas a
Eventos Discretos. Sdo Paulo: Editora Edgard Bllicher, 1996.

MOORE, K. E., BRENNAN, J. E. Alpha/SIM Simulation Software Tutorial. In:
Proceedings of the 1996 Winter Simulation Conference, p.632-639, 1996.

PANDOLFI, C. Comunicagcdo entre Programas para a Simulacdo Distribuida de
Sistemas Produtivos. Trabalho de Formatura, Dep. Eng. Mecéanica, Escola
Politécnica da USP, 2005.

REMBOLD U.; NAJI, B;; STORR, A. Computer Integrated Manufacturing And
Engineering. Londres: Addison-Wesley, 1994.

SHI, Y., GREGORY, M. Infernational manufacturing networks — to develop global
competitive capabilities. Journal of Operations Management, No. 16, pp.195-214,
1998.

SRINIVASAN, R., VENKATASUBRAMANIAN, V. Automating HAZOP analysis of
batch chemical plant: Part I. The knowledge representation framework. Computers
Chem. Enginnering, Great Britain, Vol. 22, No. 9, p.1345-1355, 1998.

Middleware — Uma abordagem as caracteristicas e funcionalidades de CORBA.
Disponivel em:

<hitp:/www.inf ufrgs br/apesquisa/procpar/disc/inf01008/trabalhos/sem00-
1/CORBA/CORBAgeyer2.htm> Acesso em 5 de junho de 2006.

56

Palestra sobre introducdo ao CORBA. Disponivel em: <http://www.dicas-
l.com.br/cursos/corba.ppt>. Acesso em 5 de junho de 2006.

Souza, |, Vantagens da utilizagdo do CORBA no Gerenciamento de Redes.
Disponivel em: <www.lasid.ufba.br/eventos/wola99/resumos/ivone.html>. Acesso em

5 de junho de 2006.

OMG. Site oficial da OMG. Disponivel em: <http://www.omg.org>. Acesso em 5 de
junho de 2006.

CORBA em C++ Uma abordagem para o desenvolvimento de aplicacbes
distribuidas em CORBA wusando C++ e ORBIX. Disponivel em:
<http://www.ravel.ufrj.brfarquivosPublicacoes/helvecio rel_corba.pdf>. Acesso em 3
de junho de 2008.

Profibus. Site oficial da organizacdo mundial de usuarios de Comunicagdo Profibus.
Disponivel em: <www.profibus.org>. Acesso em 1 de junho de 2006.

Siemens. Site da Siemens. Disponivel em: <www.siemens.com>. Acesso em 1 de
junho de 2006.

The Java™ Tutorial. Tutorial explicativo sobre a ferramenta sockets. Disponivel em:
<http:/fjava.sun.com/docs/books/tutorial/networking/socketsfindex.htmi>. Acesso em
1 de junho de 2006.

57

Anexo A: Teste de comunicagdo com sockets

Esta € uma implementagéo de um ambiente de comunicagéo usando socket,
onde o servidor abre uma comunicacéo pela porta especificada e fica esperando por
conexdes de clientes infinitamente.

Quando o cliente se conecta, ele envia a frase “Teste de comunicagdo” para o
servidor, que a recebe e envia a mesma frase para o cliente, como se fosse um eco
(Figura 11).

Abaixo é demonstrada a listagem dos cédigos do servidor e do cliente.

Fecha a conexiio + Envia a frase * Teste de comunicagdo"

|
< Aceita pedido
Cliente Servidor
Envia pedido >

Abre conexao

Figura 11 — Fluxograma de comunicagdo da implementacio.

A.1 Arquivo do servidor:

#include <stdio.h>

#include <winsock.h>

#include <stdlib.h>

fdefine RCVBUFSIZE 32

#define MAXPENDING 5

void DieWithError(char *errorMessage);

void HandleTCPClient (int clatSocket);

void main()

{
int servSock; i i
int ¢lntSecck: ri 1

struct sockaddr in echoServAddr;

58

struct sockaddr_in echoClntAddr; // %nde: do cliente

unsigned short echoServPort;)

int clntLen; 3 o} | [s!
WSADATA wsaData; 3] icag

echoServPort = 5600; a ara

if (WSAStartup (MAKEWORD(Z, 0), &wsaData) != 0) i} i Lo

{
fprintf{stderr, "WSAStartup() failed");

exit{1};

if ({servSock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCPE}) < 0)

DieWithError{("socket () failed"); a I i
i 1 dereg
memset {&echoServAddr, 0, sizeof(echoServAddr)); ra a a
echoServAddr.sin family = AF_INET; 1

echoServAddr.sin addr.s addr htonl {INADDR ANY):
ada
echoServAddr.sin_port = htons (echoServPort)
1
if (bind(servSock, (struct sockaddr *} &echoServAddr, sizeof (echoServaddr)) <
0)
DieWithError ("bind() failed™):;
if (iisten(servSock, MAXPENDING) < 0}
DieWithError("listen(} failed™)};
for (;7) i a
{

cintlen = sizeof (echoClntAddr);

if ((clntSock = accept(sexrvSock, (struct scckaddr *) &echoClntAddx,
&clntlLen}) < Q)
DieWithError ("accept () failed");

printf("Handling client %s\n", inet ntoa(echoClntAddr.sin_addr));
HandleTCPClient {clntSock);

}

void DieWithError{char *errorMessage)

{
fprintf(stderr,"%s: %d\n", errorMessage, WSAGetLastError());

59

exit(l):
}
void HandleTCPClient {(int cintSocket)

{

char echoBuffer[RCVBUFSIZE]; fe Ara st 1 de
int recvMsgSize; / ama d ida
// Mansaacn idn
if {{recvMsgSize = recviclatSocket, echoBuffer, RCVBUFSIZE, 0)) < 0}
DieWithError ("recv() falled"};
printf (echoBuffer) ;
Manda da da tran
while (recvMsgSize > 0) lie 1
{
i iado de o i
if (send(cintSocket, echoBuffer, recvMsgSize, 0) != recvMsglize)
DieWithError ("seand () failed™):
fica - \ais dadoz para -
if ({recvMsgSize = recv{clntSocket, echoBuffer, RCVBUFSIZE,0)) < 0)
DieWithError ("recv () failed"):
}
closesocket (clntSocket); / 1
}
A.2 Arquivo do cliente:
#include <stdic.h>
#include <winsock.h> ipli i
#include <stdlib.h>
#define RCVBUFSIZE 32 a
void DieWithError{char *errorMessage); ung i
veid main()
{
int sock; S ara
struct sockaddr_in echoServAddr:
unsgigned short echoServPert; SRs | i
char *servIP;
char *echoString; String 1d: r

char echoBuffer [RCVRUFSIZE];

int echoStringLen; g

o

60

int bytesRcvd, totalBytesRcvd;
WSADATA wsaData; ara
servIP = "192.168.0.227";
echoString ="Teste de comunicacdo™;
echoServPort = 5600;
if (WSAStartup (MAKEWORD(2, G),&wsaData) != 0} a 1 1 .d]
{
fprintf(stderr, "WSAStartup(} failed");
exit (1)
a =
if ((sock = socket (PF_INET, SCCK_STREAM, IPPROTO_TCPE)) < 0)
DieWithError ("socket() failed"):
memset (&echoServAddr, 0, sizeof (echoServAddr});
echoServAddr.sin_ family = AF_INET;
echoServAddr.sin_ addr.s_addr = inet addr(servIP);
echoServAddr.sin_port = htons(echoServPort);

[
2l

if {connect(sock, {struct sockaddr *) gechoServaddr, sizeof (echoServAddr))
< 0)
DieWithError ("connect () failed"}:

echoStringlen = strlen(echoString):;

if {send(sock, echoString, echoStringLen, 0} != echoStringLen)
DieWithError ("send() sent a different number of bytes than
expected") ;
totalBytesRcvd = 0;
printf ("Received: ");
while {tctalBytesRcvd < echoStringlen)
{

if {(bytesRcvd = recv{sock, echoBuffer, RCVBUFSIZE - 1, 0)) <= 0}
DieWithError ("recv({) failed or cocnnection closed
prematurely");
totalBytesRcvd += bytesRecvd;
echoBuffer [bytesRocvd] = *\0';
printf (echoBuffer);
}
printf ("\n"};
closesocket (sock);
WSACleanup(};
exit(0);
}
void DieWithError(char *errorMessage)

61

fprintf (stderr, "%s:
exit(1});

3d\n", errorMessage, WSAGetLastError({)):

62

Anexo B: Programacio do ambiente de simulac¢éo distribuida
implantado

B.1 Biblioteca Konfort.h do Siemens Prodave 6.0

#ifndef KOMFORT
#define KOMFORT
#ifdef _ cplusplus

extern "C" {
#endif

/***************** 'Jr'k'k**'k*********************‘k****************************/

// error no, textbuffer

int WINAPI error message (int,char *);

// kg value, float value
int WINAPT kg_tc_£loat (void *,void *);
// float value, kg value
int WINAPI float to_kg(void *,veid *);

// gp value, float wvalue
void WINAPI gp_to floati(veid *,vocid *):
// fioat value, gp value
void WINAPI float_to_gp(veld *,void *);

// wvalue, bit no

char WINAPI testbit (unsigned char,unsigned char);

// value, byte buffer
void WINAPY byte boolean (char,char*);

// byte buffer
char WINAPI boolean byte (char*);

// 2byte kf/kh value 85
unsigned short WINAPI kf integer (unsigned short):

// buffer, amount bytes to swab
void WINAPI swab_buffer(void *, int);

63

// dest buffer, source buffer amount bytes to copy

void WINAPI copy buffer (void *,void *, int);

// ptr value, amount wvalues, bytechange input, bytechange output

void WINAPI USHORT 2 bcd(unsigned short *,unsigned short,char,char};

// ptr value, amount values, bytechange input, bytechange output

void WINAPI bcd_2 USHORT (unsigned short *,unsigned short,char,char};

/***/

#ifdef _ cplusplus

} /* extern "C" */
#endif
#endif

B.2 Biblioteca w95_s7.h do Siemens Prodave 6.0

#ifndef PRODAVE

#define PRODAVE

#ifdef _ cplusplus
extern "C" {

#endif

#define BST_IN_RAM 0x0010
#define BST IN EPROM 0x0020

/*********************************‘k‘k**'i:'i:**‘k*********‘k‘k‘k*********************/
/*****************‘k*****‘k***/
/* typedef for addess table max 16 connecticns */
/**************i**'k'k**‘k*****‘k*******‘k‘k**************************************‘f
#pragma pack({l)
typedef struct

{

unsigned char adr; /* stationsadresse default 2
unsigned char segmentid; /* segment id default 0
unsigned char siotno; /* slot no default 1
unsigned char rackno; /* rack no default 0

*/
*/
>/
*/

64

} adr_table type;

typedef struct
{
unsigned char adr[é]; /* mac address =R
} mac_adr_table_type;
#pragma pack{)
/*k***/
/* connection no, device_name, connection address table */
int WINAPI load tool{char,char *,adr_table type *);
/* connection no, device_name, connection address table, mac address table */
int WINAPI load_tool_ex(char,char *,adr table type *,mac_adr_table type *};
/***/
int WINAPI unload tool(void);:
/* connection no */

int WINAPI new_ss{char};

/*****************i***/
/**/
// functions for AS300
/**l

/***l

int WINAPI ag_info({char *);

int WINAPI ag zustand(char *);
/************:**/
/* blockno, no, amount, buffer */

int WINAPI db_read{int,int,int*,void *);

int WINAPI db_write (int,int,int*,void *);

int WINAPI d_field read(int,int,int,void *};

int WINAPI d_field write(int,int,int,void *);
/***/
/* no, amount, buffer */

int WINAPI e field read{int,int,void *);

int WINAPI a_field read{ini,int,void *);

int WINAPI m_field read(int,int,void *);

int WINAPI t_field read{int,int,void *);

int WINAPI z_field read{int,int,void *);

int WINAPI a_field write(int,int,void *);

int WINAPI m field write(int,int,void *);

int WINAPI z field write(int,int,void *);
/**************************i**/
/* buffer */

int WINAPI db buch(void *);

/***/

65

/* data field, buffer */

int WINAPI mix_read(char*,void*);

int WINAPI mix write(char*,void*};

/*** R T X TR FEEE L E R S 8 0 L ik i E ********************7\'*********************/
/* no, bitnoc */

int WINAPI mb_setbit(int,int);

int WINAPI mb resetbit{int,int):

/* no, bitno, value */

int WINAPI mb bittest (int,int,char *);

/*****'k********'k**************'kﬂr*********************** *******************/

/**************‘k*‘k************************************‘k****‘k*‘k*'k*********/
/***********‘k‘k***/
// functions for AS200
/*******‘k**********‘k****‘k‘k‘k‘k************************************‘k*********'Jr/

/*******************‘k***********************'i:'*'k*'k**************************/

// no, amount, wvalue

int WINAPI as200_e_ field_read(int,int,void*);
int WINAPI as200 a field read({int,int,void*);
int WINAPI as200_m_field_read(int,int,void*);
int WINAPI as200_t field read(int,int,void*);
int WINAPI as200_z_field_ read{int,int,void*);
int WINAPI as200_sm field read({int,int,void*):
int WINAPI as200 vs_field read{int,int,void*);
int WINAPI as200_a field write{int,int,void*);
int WINAPI as200_m field write{int,int,void*);
int WINAPI as200_z field write(int,int,void*);
int WINAPI as200_sm field write(int,int,void*);
int WINAPI as200_vs_field write(int, int,void*);
// data, value

int WINAPI as200_mix_read({char*,void*);

int WINAPI as200_mix write{char*, void*);

// no, bitno

int WINAPI as200_mb_setbit{int,int); /* no, bitno

*/

int WINAPI as200 _mb_ resetbit{int,int); /* ne, bitno

*/

// no, bitno, wvalue

int WINAPI as200 mb_bittest(int, int,void *}; /* no, bitno, value
>/

// value

int WINAPI as200_ag info({void*};
int WINAPI as200 ag_zustand({veid*};

/** ********************/

// functions for AS200

66

/******************'k***:ir*/
/**‘k******************l
// Teleservice functions

/'ic-k-ir**/

/**********************‘***‘k*‘k‘k*‘k**/

#define TS_CONNECTED 0x00000001
#define TS_DISCONNECTED 0xQ0000003

//dial via modem, asynchronous dial if handle

//modem name, standort name, tel.no, username, password , window handel, message,
wparam, NULL

int WINAPI ts‘dial(char*,char*,char*,char*,char*,HANDLE,UINT,WPARAM,char*);

//disconnect dial connection

int WINAPI ts_hang_up_ dial(void);

//set indicaton on ring -> message if ts-adapter is connected
// modem name, no of rings, window handel, message, wWparam, NULL

int WINAPI ts_set ringindicator(char*,int, HANDLE, UINT, WPARAM, char*) ;

// information from ring connected ts-adapter
// eventid (16 bytes) , asid {1 byte)

int WINAPI ts_read_info(void *,unsigned char *);

//disconnect ring connection

int WINAPI ts_hang_up_ ring{void);

// get names of all system known modems
// ModemID 0..n, ptr ModemName, ptr ModemNameBufferLen

int WINAPI ts_get modem name (int,char*,int*);

#ifdef _ cplusplus

} /* extern "C" */
#endif
#endif

B.3. Programa cliente do computador remoto

#include <windows.h>
#include <stdlib.h>
#include <string.h>

67

#include <stdio.h>
#inciude <conio.h>
#include <process.h>

#include "resource.h”
#include <winsock.h> /* for socket(),... */

#define MYTIMER 0x1234
#define MAX MIX 4
#define MAX_ BUFFER 2048
#define RCVBUFSIZE 32
#define TESTE 1000

char buffer?[MAX_BUFFER];

char buffer [MAX BUFFERI];

char str[100];

char strl[100};

unsigned char * buffer byte = (unsigned char *)buffer;

unsigned char * buffer byte2 = (unsigned char *}buffer2;

HANDLE hInst,segment_hnd;

char echoBuffer [RCVBUFSIZER ; /* Buffer for echo string */

int servSock;

int amount

int sock;

int g = 17;

int gz=0;

int g_p = 07

char receberServidor[8];
//char *echoString{9];

char echoStringl[9];

int echoStringlen;

struct sockaddr_in echoServAddr;

[

1;

LRESULT CALLBACK MainWndProc{ HWND, UINT, WPARAM, LPARAM };
BOOL InitApplication (HANDLE) ;

BOOL InitInstance(HANDLE, int);

BOOL WINAPI LOADBOX (HWND, UINT, WPARAM, LPARAM];
vold ThreadProc{void *param);

/*************** Fhkkhkkhkkhkkkhdrkkdhhhhhrdhbddhdd ******************i‘******‘k*‘k**‘k‘k/

/* Funktion: WinMain (HANDLE, HANDLE, LPSTR, int} */
/***/
int CALLBACK WinMain{(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR
1lpCmdLine, int nCmdShow)
{

MS5G msg;

if {(!hPrevInstance)

if (!'InitApplicaticn{hInstance))
return {FALSE};

if (!InitInstance(hInstance, nCmdShow}}
return (FALSE);

while (GetMessage (&msg,NULL,0,0))
{
TranslateMessage (&msqg) ;
DispatchMessage (&msg) ;
}
return {msg.wParam);
} /* end of WinMain */

/***********************'k'k**‘k***/

/***********'ﬁr***/

68

e Function: InitApplication(Handle) =
/*********************************'ir*******'k****************************‘k**/
BOOL InitApplication(hInstance)

HANDLE hInstance;

WNDCLASS wc;

we.style = 0;

we. lpfnWndProc = MainWndProc;

we.chClsExtra = 0;

wc.cbWndExtra = 0;

wc.hInstance = hInstance;

wc.hicon = LoadIcon{NULL, IDI_ APPLICATION);
we.hCursor LoadCursor (NULL, IDC_ ARROW);
wc.hbrBackground = GetStockObject (WHITE _BRUSH) ;
we.lpszMenuName = "IDR MENU1";

Ww¢.lpszClassName = "DemoWClass™:

return (RegisterClass(&wc)):;

} /* end of InitApplication */
/***/

/***/

/* Function: InitInstance {HANDLE, int) */
AR TR AT R EF R FRREAR AT A AT A h kA A d hx hhhAxd A hhdFxhkdhhFdrhdrhhrhhdddd hrddrrrrrdhddhht
/ /

BOCL InitInstance{hInstance, nlmdShow)

HANDLE hInstance;
int% nCngShow;
{

HWND hWnd;

hInst = hinstance;

hiWwnd = CreateWindow(
"DemoWClass™,
"Trabalho Bruno™,
WS_CVERLAPPEDWINDOW,
100,
100,
208,
104G,
NULL,
NULL,
hInstance,
NULL) ;

if {(!hWnd) return (FALSE):;

ShowWindow (hWwnd, nCmdShow) ;
UpdateWindow (hWnd) ;

return (TRUE};

} /* end of InitlInstance */
/***/

/**/

/* Function: MainWndProc (HWND, unsigned, WORD, LONG} */
/************************ii**/

LRESULT CALLBACK MainWndProc (HWND hWnd, UINT message, WPARAM wParam, LPARAM

lParam)

{
switch {message) {

case WM _COMMAND:

69

if (wParam == ID LOAD)
{
DialogBox (hinst, MAKEINTRESOURCE {IDD_TOAD}, hWnd, LOADBOX) ;
break;

}

case WM_DESTROY:

PostQuitMessage(0);
break;

default: return (DefWindowProc{hWnd, message, wParam, lParam});

i

return (0L);

} /* end of MainWndProc */
/****************'k*************************'ﬁr************************* ***'k*/

/********************************'}c**'k****************‘k**************‘k*****/

BCOL WINAPI LOADBOX (hDlg, message, wParam, lParam)
HWND hDlg:

UINT message;

WPARAM wParam;

LPARAM lParam;

{
HWND listbox:;

int j;

unsigned short echoServPort;
char *servIP;

char echoBuffer [RCVBUFSIZE];

int bytesRcvd, totalBytesRevd;
WSADATA wsabData;
i/ HANDLE handle;
int vati = 0;
static char i;
struct sockaddr_in echoServAddr;

switch {message} |
case WM _INITDIALOG:
SetDigltemText (hDlg, STATUS_SERVIDOR, "Nck");

/ /memset (bufffer, 0,MAX BUFFER);
break;
case WM TIMER:
case WM COMMAND:
if ((wParam == IDOK) || (wParam == ENVIAR) ||
({message == WM TIMER) && (wParam == MYTIMER}}}

{
memset (echoString, 0, 9);
servIP = "143.107.99.178";
SetDlgItemText (hDlg, IP SERVIDOR, servIP);

if{g==0)1{
echoString[0]="'0"';
echoString[1]="0";

70

echoStringi{2]="'0";
echoString{3i='0"';
echoString[4]="0";
echoString [5]="1";
echoString[6]="0";
echoString{71="0";
echoString[8]="'1";

//g==1;

}

//if (buffer[0]== 42}

/7 a=1;

i/}

if{g==1){
echoString[0]='0";
echoString{l1]='0";
echoS8tring{2]="0";
echosString [3]="0";
echeString[4]="0";
echoString[5]="0";
echoString[6]="0Q"';
echoString{7]="0";
echoStringi{8l="1";

}

if{g==2){
echo8tring[Q0]="0";
echoString{l]}='0";
echoString[2]="'1";
echeString[3]="0";
echoString[4]="0";
echoString{5]="0";
echoStringi6]='0";
echoString(7}="'0";
echoString[8]="1";

}

if(gq==3)1{
echoString[0]='1";
echeString[l]="0";
echeString[2]="0";
echoString[3]="0";
echoStringf41="'0";
echoString[5i='0"';
echoString[6]="0";
echo8tring[7]="0";
echoString{8)="'1";

}

if(g==4){
echoString[0]='0";
echoString{1]='0"';
echoString[2}="0"';
echoString[3]="0";
echoString[4]='0";
echoString[5]="'1";
echoString[6]="0";
echeString[7]="0";
echoString[8]="2";

}

if{g==5){

echoString[0]="0";
echoString[1]="1";
echoString[2]='0";
echoString[3]1='0";
echoString[4]="0";

71

echoString([53]="'0";
echoStringfe]='0";
echoString[7]="0";
echoString[8)="'2";

}

if (g==6)}{
echoString[0i='0";
echoString[1l]='0";
echoString[2]1="1";
echoString[3]="0";
echoString(4}='0";
echoString[5]='0";
echoString[6]="0";
echoString[7]='0";
echoString[8]="2";

}

if{g==7){
echoString[0]="0";
echoString[1]="G";
echoString[2]="0";
echoString(3]="0";
echoString(4]="0";
echoString{5]="0";
echoString{6]='0";
echoString[7]="1";
echoS$tring[8]="2";

}

1£(g==8){
echoString[0]="0";
echoString{1l]='0";
echoString{2]="'0";
echoString{3]="0";
echeString{4]='0";
echoString{5]="'0G";
echoString[6]="1";
echoString[7]1="0";
echoString(8]='2";

}

if{g==92){
echoString [0]="'0";
echeString[l]='0";
echoString[2]='0";
echeString([31='0";
echeString[4]1="'0";
echoString[5]="0";
echoString[6]="0";
echoString[7]="0";
echoString[8]="2";

}

if (g==10){
echoString{{]="1";
echoString{l]="0"';
echoStringi2]="0";
echoString(3]="0"';
echoStringid4]='0";
echoString[5}="'0";
echoString(6]="0";
echoString[71='0";
echoString([8]1='2";

}

1f{g==11)1

echoString[0]="0";

72

’f

//
r

echoString[1]="0";
echoString[2]1='0";
echosString[31="0";
echoString(4]="1";
echeString [5]="0"7;
echesString[6]1="0"';
echecString[7]="0";
echeString[8]='2";

}

if(g==12){
echoString [0Y="0";
echoString{1j="2";
echoString[2]='C";
echoString [3]="0";
echoString[4]='0";
echoS8tring [5]='0";
echoString{6}='0";
echoString{71="0";
echoString(8i="1";

H

1f (g==13){
echeString{0]1="0"';
echoString{1]='0";
echoString[231='0";
echoString[3]="1";
echoString{di="'0";
echoString[5]="0";
echoString{6]j="0";
echoString(7]="0"';
echoString [8]="1";

}

if{g==14){
echoString{0]="0";
echoString[l]1="0";
echoString[2]='0";
echoString[3]1="'0";
echoString[4]="1";
echoString[5]="0"';
echoString[6]="'0";
echo8tring{7]="'0"';
echoStringi8l="'1";
//g=13;

}

if (buffer[0]==26){
g=15;

H

if (g==15){(
echeString [0]="0";
echoString[1]='0"';
echoString [2]="0";
echeString[3]='0";
echoString[4]="0";
echoString{5]='0"';
echoString(6j="0";
echoStringf(7i="'0";
echoS8tring[8]="1";

}

if{gz==9){

echo8tring[0]='0";
echoString[l}='0";
echoString[2]='0"';
echoString[3]1="0";

73

echoStringf4i='1";
echoString{5)="0";
echoStringf6i="0";
echoString(7i="'0"';
echoString(8]="'2";
//9=13;

//gqz=10;

}

if {(gz==10} {
echoS8tringf[0i="'0";
echoString{l]="1"';
echoString{2]='0";
echoString{31='0";
echoString{4]="'0";
echoString{5]='0";
echoString{6]='0";
echoString(7]="'0";
echoStringi{8]="1"';
//g=13;
//qz=11;

}

if (gz==11){
echoString{0]1="'0";
echoStringil]="0";
echoString[2]='0"%;
echoString[3]1="'1";
echoString{4]1="0";
echoString[5]="0";
echoString[6]="0";
echoString{[7]="0";
echoString[B8]="1";

//g=13;
flqz=12;

}

if (gz==12){
echoString[C]="1";
echoString[1]="0";
echoString[2]="0";
echoString[3]="0";
echoString[4]="0";
echoString[5]="0";
echoString[6]="0";
echoString[7]='0F;
echoString[8]="2";
g=13;
qz=20;

}

gz=qz+l;

g=q+l;

74

0)

"WSAStartup() failed"™);

IPPROTC_TCP})} < 0)

failed™};

sizeof {echoServAddr));

inet addr(serviP);

htons {echoServPort) ;

LechoServAddr, sizeof{echoServhAddr))
Yconnect () failed"}:

"Nok™});

Tokt) :

0) != echoStringlen)

echoServPort = 5600;
if {WSAStartup (MAKEWCORD(2, 0),&wsaData) !=

{
SetDlgltemText (hDlg, FALHA,

exit (1});
}
if {(sock = socket (PF_INET, SOCK_ STREAM,

SetDlgItemText (hDlg, FALHA, "socket ()}

memset (&echoServaddr, 0,

echoServAddr.sin_ family = AF INET;
echoServAddr.sin addr.s addr =

echoServAddr.sin_port =

if {(connect(sock, (struct sockaddr *)

<)¢

SetDlgltemText (hDlg, FALHA,

SetDlgltemText (hDlg, STATUS_SERVIDOR,

}

else
SetDlgItemText (hDlg, STATUS_ SERVIDOR,

echoStringlen = strlen{echoString);

if {send(sock, echoString, echoStringLen,

SetDlgltemText (hDlg, FALHA, "send()

sent a different number of bytes than expected”):

ThreadProc,0,&val); // create thread

KillTimer (hDlg, MYTIMER} ;

/-k
if (wPaxam == ENVIAR) {
handle = (HANDLE} beginthread (
WaitForSingleObject (handle, 1000} ;
t
w3

totalBytesRevd = 0;

/* Set the size of the in-cut parameter */
SetTimer (hDlg,MYTIMER, TESTE, NULL} ;

if (wParam == FECHAR CONEXAQ)

75

while {totalBytesRcvd < echoStringLen)
{
if {(bytesRcvd = recv{sock,
echoBuffer, RCVBUFSIZE - 1, 0)) <= 0)
SetDlgItemText {nhDlg, FALHA,
"recv{) failed or connection closed prematurely”);
totalBytesRcvd += bytesRevd;
echoBuffer [bytesRevd] = *'\N0';

}

buffer[0]=echoBuffer[{];
buffer2 [0]l=echoBuffer[1l];

/fif {receberServidor != echoBuffer)
I8!

listbhox =
GetDlgIitem(hDlg, STATUS ENTRADA);

SendMessage (listbox, LB_RESETCONTENT, O, 0} ;

for {i=0;i<amount;i++)
{
stri[0] = 0;
wsprintf(str, "%4d. ",1i):
j = 0x01;
while (31=0x100)
{
if (j & buffer byte[i])
strcat (strl,"1"};
else
strcat{strl,"0"};
J=j<<1i;
¥
strcat(str,strl);

SendMessage (listbox, LB_ADDSTRING,Q, (L.PARAM)str};
SetDlgltemText {RDlg,
STATUS_ENTRADA, str);

listbox =
GetDlgItem(hDlg, STATUS SAIDA);

SendMessage (listbox, LB_RESETCONTENT, 0, 0) ;

for (i=0;i<amount;i++)
{
strl[0] = 0;
wsprintfi{str, "%4d. ",i};
j = 0x01;
while (3j!=0x100}
{
if (j & buffer_byteZ[il})
strcat(strl,™1™);
else
strecat{strl, "0");
j=3«<<1;
}

strcat(str,strl);

76

STATUS_SAIDA, str):

} // end of case

SendMessage(listbox,LB_ADDSTRING,O,(LPARAM)Str);
SetDigItemText {(hDlg,

UpdateWindow (hDlg) ;
/1)

/7 receberServidor [0]=echoBuffer[0]:;
//receberServider|l]=echoBuffer[l];

closesocket(sock);
WSACleanup () ;
//} //FECHA O FOR

}
if (wParam == IDCAMNCEL)
{
Endbialog{hDlg, TRUE};
break;
}
i1f {wParam == FECHAR _CCONEXAO)
{
//closesocket (sock) ;
//WSACLleanup () ;
break;
}
if {wParam == COMECA _PRODUCRO)
{
q=0;
break;
}
if {wParam == PAUSA PRODUCAOQ}
{
q_p=d;
g=18;

break;

if (wParam == REINICIA PRCDUCARO)

q=q_p;
break;

if (wParam == STOP_PRODUCAO)

g=18;
break;

if (wParam == ZERAR)

gqz=9;
break;
}
default:
return (FALSE) ;

77

return {TRUE);
} /* end of LOADBOX */

/*******‘k**'k*********************************** EEE R R L R e R R Y */

void ThreadProc{void *param)
{

_endthread{);

B.4. Programa servidor do computador local

[‘/**‘k***‘A‘******************‘k**********
"
*******'}r*‘k‘k"r***/
#include <windows.h>

#include <stdlib.h>

#include <string.h>

#include <stdio.h>

#include <conio.h>

#include <process.h>

#include "resource.h"

#include <winsock.h> /* for socket(),... */

#include "wS5 s7.h"
#include "komfort.h®

#define RCVBUFSIZE 32 /* 8ize of receive buffer */
#define MAXPENDING 5 /* Maximum outstanding connection requests */

#define MYTIMER 0x1234
#define TESTE 500

tdefine MAX MIX 4

#define MAX BUFFER 2048
HANDLE hInst,segment hnd;

char buffer [MAX BUFFER] ;

char buffer2[MAX BUFFER];

char buffer3[MAX_BUFFER};

char echoBuffer {RCVBUFSIZE] ; /* Buffer for echo string */
char str{1007;

char enviarCliente[8];

char str escritall00];

char strl{100];

int res;

int res?;

int res3;

int servSock:;

int recvMsgSize; /* Size of received message */

78

int clntSocket;

//int servSock; /* Socket descriptor for server */
int clntSock: /* BSocket descriptor for client */
struct sockaddr_in echoServAddr; /* Local address */

struct sockaddr in echoClntAddr; /* Client address */

unsigned short echoServPort; /* Server port */

int clntLen: /* Length of client address data structure */
WORD * buffer_int = (WORD *)buffer;

unsigned char * buffer byte = (unsigned char *)buffer;

unsigned char * buffer byte? = {unsigned char *)buffer?;

char text [255];

#pragma pack(l)

adr_table_type adr_ table[5] = { {2,0,2,0},
{0,0,2,0%,
{0,0,2,0},
{0,0,2,0},

{0,0,0,0}};

int datatype = 'e';

int datatype2 = 'a’;

int blockno = 10;
int no = 0;
int bitno = 0Q;
int amount = 23
char ssnoc 1;

int i;

struct
{
unsigned char type:;
unsigned char size;
unsigned short dbno;
unsigned short no;
} mix tab[30]:
#pragma pack{)

//char sModemName[80}="Sportster 14400 FAX exXtern™;
char sModemdame [80]="Standardmodem”;

char sStandortName [80]="Standardstandort™;

//char sTelNo[80]="+49 {0721) 595-5587";

char sTelNo[80]="+49 ({171} 2255521";

char sUserName [80]="ADMIN";

char szPassword{80]="admin";

EWND ProgHandle;

LRESULT CALLBACK MainWndProc{ HWND, UINT, WPARAM, LPARAM };
BOOL InitApplication(HANDLE) ;

BOOL InitInstance {HANDLE, int};

BOOL WINAPI LOADBOX { HWND, UINT, WPARAM, LPARAM);
void ThreadProc(void *param);

/***********************‘k***/

/* Funktion: WinMain (HANDLE, HANDLE, LPSTR, int) */
/*************************i'*******************9:***************************/
int CALLBACK WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR
lpCmdLine, int nCmdShow)
{

MSG msg;

79

if (thPrevinstance)
if (!InitApplication(hInstance})
return (FALSE):

if (!InitInstance (hInstance, nCmdShow))
return (FALSE):;

while (GetMessage {&msg,NULL,0,0))
{
TranslateMessage (&msqg);
DispatchMessage (&amsg) ;
}
return {(msg.wParam);
} /* end of WinMain */

/***,

/***/

/* Function: InitApplication(Handle) */
/***/
BOOL InitApplication{hInstance)

HANDLE hInstance;

1
WNDCLASS wc;

Wwc.style = 0;

wc.lpfnWndProc = MainWndProc;

wc.cbClsExtra = 0;

wc.cbWndExtra = 0;

we.hInstance = hInstance;

wc.hlIcon = LoadIcon (NULL, IDI_APPLICATION) ;
wc.hCursor = LoadCursor {NULL, IDC_ARROW);
we.hbrBackground = GetStockObject(WHITE_BRUSH);
wc.lpszMenuName = "IDR_MENU1";

wc.lpszClassName = "DemoWClass";

return (RegisterClass(awc));
} /* end of InitApplication */

/***/

/***/

/* Function: InitInstance{HANDLE, int) */

/***/

BOCL TnitInstance{hInstance, nCmdShow)

HANDLE hinstance;
int nCmdShow;
{

HWND hWnd;

hinst = hInstance;

hWnd = CreateWindow (
"DemoWClass",
"Trabalho Bruno®,
WS_OVERLAPPEDWINDOW,
100,
100,
2900,
100,

NULL,
NULL,
hInstance,
NULL) ;

80

if (!'hWnd) zreturn (FALSE):

ShowWindow (hWind, nCmdShow) ;
UpdateWindow (hWad) ;

return (TRUE) ;

} /* end of InitInstance */
/***/

/**/

/* Function: MainWndProc (HWND, unsigned, WORD, LONG) */
/**/
LRESULT CALLBACK MainWndProc (HWND hWnd, UINT message, WPARAM wParam, LPARAM
1lParam)

{

switch (message) {
case WM COMMAND:

if (wParam == ID LOAD)
{
DialogBox(hInst,MAKEINTRESOURCE(IDD_LOAD),hWnd,LOADBOX);
break;
}

case WM DESTROY:
unload_tool(}):
PostQuitMessage (0);
break;

default: return (DefWindowProc (hWnd, message, wParam, lParam));

}

return (9%L):

} /* end of MainWndProc */
/***/

/***/

BOOL WINAPI LOADBOX{hDlg, message, wParam, lParain)
HWND hDlg;
UINT message;
WPARAM wParam;
LPARAM 1Param;
{

BOOL result;
HWHND listbox;
int show = 0;
int result2;
int j;

int loop=0;
char output;

int total=0;

static char i;

char szErrorFilePath[MAX_PATH];
char drive[MAX PATH];

char dir[MAX PATH]:

char fname [MAX_PATH];

char ext[MAX PATH];

WSADATA wsaData; /* Structure for WinSock setup communication */

81

HANDLE handle;
int wval = 0;

switch (message) {
case WM INITDIALOG:

case WM COMMAND:

MYTIMER

—
-
e

1

i=0;
//teste
output =
show = 1;
datatype ='e';

datatypez ="a';

blockno=1;

//no=16;

amount=1;

memset { buffer,0,sizecf(buffer});

h';

//teste

CheckDlgButton {nDlg, IDC_VERB1, 1);

itoa(adr_table[i].adr,str,10);
SetDlgItemText (hDlg, IDC_STATIONADR, str);
itoa{adr_table[i].rackno,stz,10);
SetDlgItemText (hDlg, IDC_RACKNO, str):
itca(adr_table[i].segmentid, stxr,10);
SetDlgItemText (hDlg, IDC SEGMENTID, str);
itoa(adr_table[i].slotno,str, 10);
SetDlgItemText (hDlg, IDC SLOTNO, str);:

// load error text file "error.dat"
GetModuleFileName (NULL, szErrorFilePath,MAX PATH) ;
_Splitpath(szErrorFilePath,drive,dir, fname, ext);

sprintf(szErrorFilePath,"%s%serror.dat",drive,dir);
errcr message(0,szErrorFilePath);

adr_table[4}.adr = 0;

show = 1;
break;

case WM TIMER:

if {(wParam == IDC_VERB1l} ||
{wParam == IDC VERB2)
(wParam == IDC_VERB3}
(wParam == IDC_VERB4)}
{
show = 1;
break;

}

if ((wParam == IDOK} ||
({message == WM _TIMER) && (wParam ==

82

if (IsDlgButtonChecked {hDlg, IDC_VERBL))

2s5n0=1;

if (IsDlgButtonChecked{hDlg, IDC_VERBZ})
ssno=2;

if (IsDlgButtonChecked(hDlg, IDC_VERB3))
$5no=3;

if ({IsDlgButtonChecked (hbDlg, IDC_VERB4))
ssno=4;

adr_table[i].adr
GetDlgItemInt {(hDlg, IDC_STATIONADR, &result,d):

adr_table{i].rackno
GetDlgitemInt (hDlg, IDC RACKNO, &result,C);

adr_table[i].slotno
GetDlgItemInt (hDlqg, IDC _SLOTNO, &result,0);

adr_table[i].segmentid
GetDlgItemInt (hDlg, IDC_SEGMENTID, &result,0):

il

ssno = 1;

if (wParam != MYTIMER)
{
res = unlocad tool():
res =
load_tool(ssno,NULL,(adr_table_type*)adrqtable);

//Parte do

Socketsi**********************‘k*************************************

echoServPort = 5600;//atoi (argv([1])
/* first arg: Local port */

if (WSAStartup (MAKEWORD(Z, 0),
&wsaData) != 0} /* Load Winsock 2.0 DLL */
{
fprintf{stderr, "WSAStartup ()
failed");
exit(1);
}

/* Cria o Sockets para as futuras
conecgdes */
if ((servSock = socket (PF_INET,
SOCK_STREAM, IPPROTO TCP}} < 0)
SetDigIltemText (hDlg, FALHA,
"socket() failed");//DieWithError("socket() failed");

/* Construct local address structure
*/
memset (&echoServAaddr, 0,
sizeof {echoServaddr)); /* Zero out structure */
echoServAddr.sin family = AF INET;
/* Internet address family */ N
echoServAddr.sin_addr.s_addr =
htonl (INADDR ANY); /* Any incoming interface */ -
echoServAddr.sin_port =
htons (echoServPort); /* Local port */

/* Bind to the local address */
if (bind{servSock, (struct sockaddr
*) &echoServAddr, sizeof {echoServAddr)) < 0)

SetDlgItemText(thq! FALHA,

83

"bind(} failed");//DieWithError("bind{) failed");

/* Mark the socket so it will listen
for incoming connections */
if (listen(servSock, MAXPENDING} < 0)
SetDlgltemText (hDlg, FALHA,
"listen{) failed");//DieWithError("listen() failed");

//Final do Sockets

EA R R R R R Rl e e e T e N Ty

handle = (HANDLE) _beginthread|
ThreadProc, 0, &val); // create thread
WaitForSingleObject (handle, 1000) ;

SetDlgIltemText (hDlg, IP_CLIENTE,
inetgptoa(echoClntAddr.sin_addr));
cintSocket=clntSock;

/* Receive message from client */
if ((recvMsgSize = recv(clntSocket,
echoBuffer, RCVBUFSIZE, 0)) < 0);
//SetDlgltemText (hDlg, FALHA, "recv()
failed");//DieWithExror("recv() failed");
SetDlgltemText (hDlg,
RECEBIDQ, echoBuffer j;

/* Set the size of the in-out parameter */
SetTimer (hDlg, MYTTMER, TESTE, NULL} ;

if {wParam == Fechar)
KillTimer (hDlg, MYTIMER) ;

//program savety
if (amount > MAX BUFFER) amount =
MAX BUFFER;

res = new ss{(char}(i+l));
res2 = new_ss((char) (i+l));

if (res == 0 && res2 == ()
{

/* Casc queira fazer a reacdo da
saida por alteracdo da entrada.
if (bufferi0] == 1)
{
buffer3[0i= 15;

i=0;
res3 = new_ss((char) (i+1));
if (res3 == 0)

84

a_field write (no,amount,buffer3);

saida.

12 se vier 0 no dltimo bit

16 se vier 1 no Gltimo bit

20 se vier 2 no nltime bit

escreve ele na saida.

a_field write(no,amount,buffer3);

e_fielq_;ead(no,amouanbufferl5

res3

}
*/

// Constroi o buffer para escrever na

if (echcBuffer[0]

== 49)

total=total+l;

if (echoBufferil]

== 48}

total=total;

if {echoBuffexr[i}

== 49)

total=total+2;

if {echoBuffer([l]

== 48}

total=total;

if (echoBuffer[2]

== 49)

totai=total+4;

if (echoBufferi2]

== 48)

total=total;

if {(echoBuffer[3]

== 49)

total=tctai+B;

if (echoBuffer[3}

== 48)

total=total;

1f (echoBuffer[4]

== 49])

total=total+ls;

if (echcBuffer[4]

== 48)

total=total;

if (echoBuffer[5]

== 49)

total=total+32;

if (echoBuffer[5]

== 48)

total=total;

if (echoBuffer[§]

== 49}

total=total+64;

if (echcBuffer[6]

== 48)

total=total;

if (echcocBuffer{?]

== 49)

total=total+l28;

if {echoBuffer[71

== 48)

total=total;
// no dltimo kit enviado pelo cliente
tem o enderece do cartdo onde serid escrita a saida.

//Vai escrever no

if {echoBuffer[8]
no=12;
//Vai escrever no

if (echoBuffer[8]
no=16;
//Val escrever no

if (echoBuffer[8]
no=20;

cartdce de enderego
== 48)
cartdo de enderego
== 49)
cartdo de enderecgo

== 50)

// Com o buffer recebido completo,

buffer3[0}= total;

i=0;

res3 = new_ss({(char) (i+1));

if (res3 == 0)
resi =

//Ler a entrada.

if (datatype == 'e!')

res =

85

//Ller a saida.
if (datatype2 == 'a'}
res?z =
a_field_ read(no,amount,buffer?);

enviarCliente[0]=buffer[0];
enviarCliente[l]=buffer2(0];

while {(recvMsgSize > 0) // O zerc indica

o fim da trasmissdo pre cliente.
{
//Mandando pro cliente a
leitura da saida.
if
(send(clntSocket,enviarCliente , recvMsgSize, 0) t= recvMsgSize) ;

//SetDigltemText (hDlg, FATLHA, "send() failed");

//Manda pro cliente a

leitura da entrada.
//if (send{clntSocket,

buffer2, recvMsgSize, 0) != recvMsgSize);

//Verifica se tem mais

informagdc para receber
if ({recvMsgSize =

recv(clintSocket, echoBuffer, RCVBUFSIZE,0}) < 0);

//SetDlgltemText {(hDlg, FALHA, "recv() failed"):
}

closesocket{clntSocket); // Fecha a conexdoc
{socket) com o cliente.

if (res != 0 || res2 = 0 || res3 != 0)
{
KiliTimer (hDlg,MYTIMER) ;
EndDialog (hDlg, TRUE):;
return (TRUE);
H

//if ({message == WM _TIMER) && (wParam ==

MYTIMER))
//SetTimer (hDlg, MYTIMER, TESTE, NULL) ;

show = 1;

break;
}
if (wParam == Fechar) KillTimexr {hDlg,MYTIMER);
if (wParam == IDCANCEL)

{
KilliTimer (hDlg, MYTIMER) ;
EndDialog{hDlg, TRUE}:
show = 1;

break;

]

86

(socket} com ¢ cliente.

} // end of case

if (show 1)

IDC STATTIONADR, &result,0):
IDC_RACKNO, &result,0);
IDC SLOTNQ, &result,0);

IDC SEGMENTID, &result,0);

if (wParam == Fechar)
{
res = unlcad_tool{):
//closesocket (clntSocket); // Fecha a conexdo

show=1;
break;
}

default:

return (FALSE) ;

{
adr_table[i] .adr = GetDlgitemInt (hDlg,

adr table[i] .rackno GetDlgItemInt (hDlg,

1

adr tabliefi].slotno GetDlgltemInt (hDlg,

adr_table[i].segmentid Get.DlgItemlInt (hDlg,

t e b b
wrR o

e

if (IsDlgButtonChecked(hDig, IDC _VEREL})
if (IsDlgButtonChecked(hDlg, IDC_VERB2})
if (IsDlgButtonChecked(hDlg, IDC_VERB3})
if (IsDlgButtonChecked{hDlg, IDC_VERB4))

1
N

it

itoa(adr_table[il.adr,str,10);

SetDlgItemText (hDig, IDC_STATIONADR, str);

itoa{adr_tablef{i] .rackno,str,10);

SetDlgItemText (hDlg, IDC_RACKNO, str);

itoa(adr_table[i].segmentid, str,10);

SetDlgltemText (hDlg, IDC_SEGMENTID, str):

itoa{adr_table[i].slotno,str,10);

SetDlgltemText (hDlg, IDC_SLOTNQ, str);

result? = new_ss((char) (i+1)};

if (result2 == 0)

SetDlgItemText (hDlg, status_conexaoc, "ok");
if (result2 != Q)

SetDlgltemText (hDilg, status_conexac, "Nok"};

listbox GetDlgItem{hDlg,mostra entrada);
SendMessage (listbox, LB_RESETCONTENT, 0, 0} ;

for (i=0;i<amount;i++)
{

strl[0] = 0;
weprintf (str, "%4d. ",i);
j = 0x01;

while (j!=0x180)
{
if (j & buffer byteii})
strcat({strl,"1");
else
strcat (strl, "0");
j=7<«1;
}
streat (str,strl};

87

SendMessage (listbex, LB ADDSTRING, 0, (LPARAM) str) ;
SetDlgItemText (hDlg, mostra_entrada, str);

1

listbox = GetDlgItem(hDlg,mostra_saida);
SendMessage {listbox, LB_RESETCONTENT, 0, 0) ;

for (i=0;i<amount;i++)
{
strl[0] = 0;
wsprintf(str, "%4d. ",1i);
j = 0x01;
while (j!=0x100)
{
if (7 & buffer byte2[i])
strcat{strl,"1");
else
strcat{strl, "0");
J=j<<1;
}
strcat{stxr,strl);

SendMessage (listbox, LB_ADDSTRING, 0, (LPARAM)str) ;
SetDlgItemText (hDlg, mostra_saida, str);
1

UpdateWindow (hDlg} ;
}

return (TRUE);
} /* end of LOADBOX */

/*************************************9(*******7\-****************************/

ungigned long hexstr2value{char * s)
{

return(strtol (s, NULL, 16} };

}

unsigned long decstr2value(char * s}
{

return(atcl(s));

}

unsigned leong binstr2value(char * s)
{

unsigned long v 0;

unsigned long w = 1;

int i,9:

j = strlen{s):
for {i=0;i<j;i++}
{
if (s[i] == "1y v = v | w;
w = W << 1;
}
return(v);

}

volid ThreadProc{void *param)
{

connect */

//int h=*((int*)param);
//printf ("%d Thread is Running!\n",h);
clntben = sizeof (echoClntAddr);

/* Wait for a client to

if {(clntSock = accept (servsock,

(struct sockaddr *) &echoClntAddr, &clntLen)) < 0)

//8etDlgIltemText (hDlg, FALHA

"accept () failed");//DieWithError{"accept() failed");

_endthread() ;

r

89

